These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19774857)

  • 1. Variation in biofilm structure and activity along the length of a rising main sewer.
    Mohanakrishnan J; Sharma KR; Meyer RL; Hamilton G; Keller J; Yuan Z
    Water Environ Res; 2009 Aug; 81(8):800-8. PubMed ID: 19774857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system.
    Gutierrez O; Mohanakrishnan J; Sharma KR; Meyer RL; Keller J; Yuan Z
    Water Res; 2008 Nov; 42(17):4549-61. PubMed ID: 18760816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the long-term effect of wastewater compositions on maximum sulfide and methane production rates of sewer biofilm.
    Sun J; Ni BJ; Sharma KR; Wang Q; Hu S; Yuan Z
    Water Res; 2018 Feb; 129():58-65. PubMed ID: 29132122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks.
    Nielsen AH; Yongsiri C; Hvitved-Jacobsen T; Vollertsen J
    Water Sci Technol; 2005; 52(3):201-8. PubMed ID: 16206860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of nitrate addition on biofilm properties and activities in rising main sewers.
    Mohanakrishnan J; Gutierrez O; Sharma KR; Guisasola A; Werner U; Meyer RL; Keller J; Yuan Z
    Water Res; 2009 Sep; 43(17):4225-37. PubMed ID: 19577270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of food waste addition on biofilm formation and sulfide production in a gravity sewer.
    Zan F; Liang Z; Jiang F; Dai J; Chen G
    Water Res; 2019 Jun; 157():74-82. PubMed ID: 30953857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of sulfide production in a full scale wastewater sludge rising main.
    Matos RV; Matias N; Ferreira F; Santos Silva J; Matos JS
    J Environ Manage; 2018 Mar; 209():505-514. PubMed ID: 29316471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system.
    Satoh H; Odagiri M; Ito T; Okabe S
    Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.
    Sun J; Pikaar I; Sharma KR; Keller J; Yuan Z
    Water Res; 2015 Mar; 71():150-9. PubMed ID: 25616115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic evaluation of a dynamic sewer process model for prediction of odor formation and mitigation in large-scale pressurized sewers in Hong Kong.
    Liang ZS; Zhang L; Wu D; Chen GH; Jiang F
    Water Res; 2019 May; 154():94-103. PubMed ID: 30776618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in Microbial Biofilm Communities during Colonization of Sewer Systems.
    Auguet O; Pijuan M; Batista J; Borrego CM; Gutierrez O
    Appl Environ Microbiol; 2015 Oct; 81(20):7271-80. PubMed ID: 26253681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics and dynamic modelling of H2S production in sewer systems.
    Sharma KR; Yuan Z; de Haas D; Hamilton G; Corrie S; Keller J
    Water Res; 2008 May; 42(10-11):2527-38. PubMed ID: 18336860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stratified microbial structure and activity in sulfide- and methane-producing anaerobic sewer biofilms.
    Sun J; Hu S; Sharma KR; Ni BJ; Yuan Z
    Appl Environ Microbiol; 2014 Nov; 80(22):7042-52. PubMed ID: 25192994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic microbial response of sulfidogenic wastewater biofilm to nitrate.
    Mohanakrishnan J; Kofoed MV; Barr J; Yuan Z; Schramm A; Meyer RL
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1647-57. PubMed ID: 21611797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment.
    Liu Y; Sharma KR; Ni BJ; Fan L; Murthy S; Tyson GQ; Yuan Z
    Water Res; 2015 May; 74():155-65. PubMed ID: 25727155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations in activities of sewer biofilms due to ferrous and ferric iron dosing.
    Kiilerich B; Kiilerich P; Nielsen AH; Vollertsen J
    Water Sci Technol; 2018 Jul; 2017(3):845-858. PubMed ID: 30016302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent findings on sinks for sulfide in gravity sewer networks.
    Nielsen AH; Hvitved-Jacobsen T; Vollertsen J
    Water Sci Technol; 2006; 54(6-7):127-34. PubMed ID: 17120642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of reduced water consumption on sulfide and methane production in rising main sewers.
    Sun J; Hu S; Sharma KR; Bustamante H; Yuan Z
    J Environ Manage; 2015 May; 154():307-15. PubMed ID: 25748598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the pH effect on sulfidogenesis in anaerobic sewer biofilm.
    Sharma K; Derlon N; Hu S; Yuan Z
    Water Res; 2014 Feb; 49():175-85. PubMed ID: 24326022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism and kinetics of biofilm growth process influenced by shear stress in sewers.
    Ai H; Xu J; Huang W; He Q; Ni B; Wang Y
    Water Sci Technol; 2016; 73(7):1572-82. PubMed ID: 27054728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.