BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

637 related articles for article (PubMed ID: 19775096)

  • 41. Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols).
    Diab C; Winnik FM; Tribet C
    Langmuir; 2007 Mar; 23(6):3025-35. PubMed ID: 17284056
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The structure of zwitterionic phosphocholine surfactant monolayers.
    Yaseen M; Lu JR; Webster JR; Penfold J
    Langmuir; 2006 Jun; 22(13):5825-32. PubMed ID: 16768514
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aggregation properties of amide bearing cleavable gemini surfactants by small angle neutron scattering and conductivity studies.
    Hoque J; Kumar P; Aswal VK; Haldar J
    J Phys Chem B; 2012 Aug; 116(32):9718-26. PubMed ID: 22809410
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Decarboxylation of 6-nitrobenzisoxazole-3-carboxylate as kinetic probe for piperazinium-based cationic micelles.
    Brinchi L; Germani R; Savelli G; Spreti N
    J Colloid Interface Sci; 2004 Jun; 274(2):701-5. PubMed ID: 15144847
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cationic ester-containing gemini surfactants: adsorption at tailor-made surfaces monitored by SPR and QCM.
    Tehrani-Bagha AR; Holmberg K
    Langmuir; 2008 Jun; 24(12):6140-5. PubMed ID: 18494507
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cationic surfactants for micellar electrokinetic chromatography: 2. Representative applications to acidic, basic, and hydrophobic analytes.
    Schnee VP; Palmer CP
    Electrophoresis; 2008 Feb; 29(4):777-82. PubMed ID: 18297645
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gemini surfactants at the air/water interface: a fully atomistic molecular dynamics study.
    Khurana E; Nielsen SO; Klein ML
    J Phys Chem B; 2006 Nov; 110(44):22136-42. PubMed ID: 17078649
    [TBL] [Abstract][Full Text] [Related]  

  • 48. First evaluation of the thermodynamic properties for spheres to elongated micelles transition of some propanediyl-alpha,omega-bis(dimethylalkylammonium bromide) surfactants in aqueous solution.
    Fisicaro E; Compari C; Duce E; Contestabili C; Viscardi G; Quagliotto P
    J Phys Chem B; 2005 Feb; 109(5):1744-9. PubMed ID: 16851153
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Self assembly of pH-sensitive cationic lysine based surfactants.
    Mezei A; PĂ©rez L; Pinazo A; Comelles F; Infante MR; Pons R
    Langmuir; 2012 Dec; 28(49):16761-71. PubMed ID: 23163615
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surfactant tail length-dependent lipase activity profile in cationic water-in-oil microemulsions.
    Dasgupta A; Das D; Mitra RN; Das PK
    J Colloid Interface Sci; 2005 Sep; 289(2):566-73. PubMed ID: 16112238
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interactions between adsorbed layers of cationic gemini surfactants.
    Blomberg E; Verrall R; Claesson PM
    Langmuir; 2008 Feb; 24(4):1133-40. PubMed ID: 18052227
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular dynamics simulation of self-assembly of n-decyltrimethylammonium bromide micelles.
    Jorge M
    Langmuir; 2008 Jun; 24(11):5714-25. PubMed ID: 18454560
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Critical evaluation of micellization behavior of nonionic surfactant MEGA 10 in comparison with ionic surfactant tetradecyltriphenylphosphonium bromide studied by microcalorimetric method in aqueous medium.
    Prasad M; Chakraborty I; Rakshit AK; Moulik SP
    J Phys Chem B; 2006 May; 110(20):9815-21. PubMed ID: 16706433
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solvation dynamics in reverse micelles: the role of headgroup-solute interactions.
    Faeder J; Ladanyi BM
    J Phys Chem B; 2005 Apr; 109(14):6732-40. PubMed ID: 16851757
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of head group polarity and spacer chain length on the aggregation properties of gemini surfactants in an aquatic environment.
    Borse M; Sharma V; Aswal VK; Goyal PS; Devi S
    J Colloid Interface Sci; 2005 Apr; 284(1):282-8. PubMed ID: 15752815
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Probing the relationship between interfacial concentrations and lipase activity in cationic W/O microemulsions: a quantitative study by chemical trapping.
    Dasgupta A; Das D; Das PK
    Langmuir; 2007 Apr; 23(8):4137-43. PubMed ID: 17348698
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Self-assembly of cationic surfactants that contain thioether groups in the hydrophobic tails.
    Lundberg D; Shi L; Menger FM
    Langmuir; 2008 May; 24(9):4530-6. PubMed ID: 18361533
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermodynamics of micelle formation in water, hydrophobic processes and surfactant self-assemblies.
    Fisicaro E; Compari C; Duce E; Biemmi M; Peroni M; Braibanti A
    Phys Chem Chem Phys; 2008 Jul; 10(26):3903-14. PubMed ID: 18688390
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Aggregation behavior of nitrophenoxy-tailed quaternary ammonium surfactants.
    Huang X; Han Y; Wang Y; Wang Y
    J Phys Chem B; 2007 Nov; 111(43):12439-46. PubMed ID: 17927233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.