BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 19775144)

  • 1. On the nature of the adsorbed hydrogen phase in microporous metal-organic frameworks at supercritical temperatures.
    Poirier E; Dailly A
    Langmuir; 2009 Oct; 25(20):12169-76. PubMed ID: 19775144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling.
    Poirier E; Dailly A
    Nanotechnology; 2009 May; 20(20):204006. PubMed ID: 19420654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applicability of the BET method for determining surface areas of microporous metal-organic frameworks.
    Walton KS; Snurr RQ
    J Am Chem Soc; 2007 Jul; 129(27):8552-6. PubMed ID: 17580944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches.
    Meisner GP; Hu Q
    Nanotechnology; 2009 May; 20(20):204023. PubMed ID: 19420671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials.
    Thomas KM
    Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen adsorption measurements and modeling on metal-organic frameworks and single-walled carbon nanotubes.
    Poirier E; Chahine R; Bénard P; Lafi L; Dorval-Douville G; Chandonia PA
    Langmuir; 2006 Oct; 22(21):8784-9. PubMed ID: 17014118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some remarks on the calculation of the pore size distribution function of activated carbons.
    Gauden PA; Terzyk AP; Kowalczyk P
    J Colloid Interface Sci; 2006 Aug; 300(2):453-74. PubMed ID: 16690070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saturation properties of a supercritical gas sorbed in nanoporous materials.
    Poirier E; Dailly A
    Phys Chem Chem Phys; 2012 Dec; 14(48):16544-51. PubMed ID: 22743798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks.
    Rowsell JL; Yaghi OM
    J Am Chem Soc; 2006 Feb; 128(4):1304-15. PubMed ID: 16433549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Storage of hydrogen at 303 K in graphite slitlike pores from grand canonical Monte Carlo simulation.
    Kowalczyk P; Tanaka H; Hołyst R; Kaneko K; Ohmori T; Miyamoto J
    J Phys Chem B; 2005 Sep; 109(36):17174-83. PubMed ID: 16853191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the existence of negative excess isotherms for argon adsorption on graphite surfaces and in graphitic pores under supercritical conditions at pressures up to 10,000 atm.
    Do DD; Do HD; Fan C; Nicholson D
    Langmuir; 2010 Apr; 26(7):4796-806. PubMed ID: 20205401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confinement effect on the adsorption from a binary liquid system near liquid/liquid phase separation.
    Rother G; Woywod D; Schoen M; Findenegg GH
    J Chem Phys; 2004 Jun; 120(24):11864-73. PubMed ID: 15268220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of exposed metal sites in hydrogen storage in MOFs.
    Vitillo JG; Regli L; Chavan S; Ricchiardi G; Spoto G; Dietzel PD; Bordiga S; Zecchina A
    J Am Chem Soc; 2008 Jul; 130(26):8386-96. PubMed ID: 18533719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design for hydrogen storage materials via observation of adsorption sites by computer tomography.
    Zhang L; Wang Q; Liu YC
    J Phys Chem B; 2007 May; 111(17):4291-5. PubMed ID: 17417903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanded organic building units for the construction of highly porous metal-organic frameworks.
    Kong GQ; Han ZD; He Y; Ou S; Zhou W; Yildirim T; Krishna R; Zou C; Chen B; Wu CD
    Chemistry; 2013 Oct; 19(44):14886-94. PubMed ID: 24115143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulation of the adsorption of light gases in covalent organic frameworks.
    Garberoglio G
    Langmuir; 2007 Nov; 23(24):12154-8. PubMed ID: 17956137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Appropriate volumes for adsorption isotherm studies: the absolute void volume, accessible pore volume and enclosing particle volume.
    Do DD; Do HD
    J Colloid Interface Sci; 2007 Dec; 316(2):317-30. PubMed ID: 17854818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly porous metal-organic framework containing a novel organosilicon linker--a promising material for hydrogen storage.
    Wenzel SE; Fischer M; Hoffmann F; Fröba M
    Inorg Chem; 2009 Jul; 48(14):6559-65. PubMed ID: 19530692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks.
    Yang Q; Zhong C
    J Phys Chem B; 2005 Jun; 109(24):11862-4. PubMed ID: 16852458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of carboxyl groups on the adsorption behavior of low-molecular-weight substances on a stainless steel surface.
    Nagayasu T; Yoshioka C; Imamura K; Nakanishi K
    J Colloid Interface Sci; 2004 Nov; 279(2):296-306. PubMed ID: 15464793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.