These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 19775192)
1. Bioaccumulation assessment using predictive approaches. Nichols JW; Bonnell M; Dimitrov SD; Escher BI; Han X; Kramer NI Integr Environ Assess Manag; 2009 Oct; 5(4):577-97. PubMed ID: 19775192 [TBL] [Abstract][Full Text] [Related]
2. Modeling exposure to persistent chemicals in hazard and risk assessment. Cowan-Ellsberry CE; McLachlan MS; Arnot JA; Macleod M; McKone TE; Wania F Integr Environ Assess Manag; 2009 Oct; 5(4):662-79. PubMed ID: 19552503 [TBL] [Abstract][Full Text] [Related]
3. Use of trophic magnification factors and related measures to characterize bioaccumulation potential of chemicals. Conder JM; Gobas FA; Borgå K; Muir DC; Powell DE Integr Environ Assess Manag; 2012 Jan; 8(1):85-97. PubMed ID: 21538835 [TBL] [Abstract][Full Text] [Related]
4. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223 [TBL] [Abstract][Full Text] [Related]
5. Revisiting bioaccumulation criteria for POPs and PBT assessments. Gobas FA; de Wolf W; Burkhard LP; Verbruggen E; Plotzke K Integr Environ Assess Manag; 2009 Oct; 5(4):624-37. PubMed ID: 19552497 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of bioaccumulation using in vivo laboratory and field studies. Weisbrod AV; Woodburn KB; Koelmans AA; Parkerton TF; McElroy AE; Borgå K Integr Environ Assess Manag; 2009 Oct; 5(4):598-623. PubMed ID: 19552500 [TBL] [Abstract][Full Text] [Related]
7. Comparison of three fish bioaccumulation models for ecological and human risk assessment and validation with field data. Smítková H; Huijbregts MA; Hendriks AJ SAR QSAR Environ Res; 2005 Oct; 16(5):483-93. PubMed ID: 16272045 [TBL] [Abstract][Full Text] [Related]
8. In vitro-in vivo extrapolation of quantitative hepatic biotransformation data for fish. I. A review of methods, and strategies for incorporating intrinsic clearance estimates into chemical kinetic models. Nichols JW; Schultz IR; Fitzsimmons PN Aquat Toxicol; 2006 Jun; 78(1):74-90. PubMed ID: 16513189 [TBL] [Abstract][Full Text] [Related]
9. QSAR and chemometric approaches for setting water quality objectives for dangerous chemicals. Vighi M; Gramatica P; Consolaro F; Todeschini R Ecotoxicol Environ Saf; 2001 Jul; 49(3):206-20. PubMed ID: 11440473 [TBL] [Abstract][Full Text] [Related]
10. In vitro biotransformation of surfactants in fish. Part II--Alcohol ethoxylate (C16EO8) and alcohol ethoxylate sulfate (C14EO2S) to estimate bioconcentration potential. Dyer SD; Bernhard MJ; Cowan-Ellsberry C; Perdu-Durand E; Demmerle S; Cravedi JP Chemosphere; 2009 Aug; 76(7):989-98. PubMed ID: 19433333 [TBL] [Abstract][Full Text] [Related]
11. Uncertainties in ecological, chemical and physiological parameters of a bioaccumulation model: implications for internal concentrations and tissue based risk quotients. De Laender F; Van Oevelen D; Middelburg JJ; Soetaert K Ecotoxicol Environ Saf; 2010 Mar; 73(3):240-6. PubMed ID: 20045560 [TBL] [Abstract][Full Text] [Related]
12. Persistent, bioaccumulative and toxic substances in fish: human health considerations. Dórea JG Sci Total Environ; 2008 Aug; 400(1-3):93-114. PubMed ID: 18653214 [TBL] [Abstract][Full Text] [Related]
14. Base-line model for identifying the bioaccumulation potential of chemicals. Dimitrov S; Dimitrova N; Parkerton T; Comber M; Bonnell M; Mekenyan O SAR QSAR Environ Res; 2005 Dec; 16(6):531-54. PubMed ID: 16428130 [TBL] [Abstract][Full Text] [Related]
15. Environmental risk assessment of zinc in European freshwaters: a critical appraisal. Van Sprang PA; Verdonck FA; Van Assche F; Regoli L; De Schamphelaere KA Sci Total Environ; 2009 Oct; 407(20):5373-91. PubMed ID: 19631966 [TBL] [Abstract][Full Text] [Related]
16. Approach for extrapolating in vitro metabolism data to refine bioconcentration factor estimates. Cowan-Ellsberry CE; Dyer SD; Erhardt S; Bernhard MJ; Roe AL; Dowty ME; Weisbrod AV Chemosphere; 2008 Feb; 70(10):1804-17. PubMed ID: 17904615 [TBL] [Abstract][Full Text] [Related]
17. Bioaccumulation data from laboratory and field studies: are they comparable? Burkhard LP; Cowan-Ellsberry C; Embry MR; Hoke RA; Kidd KA Integr Environ Assess Manag; 2012 Jan; 8(1):13-6. PubMed ID: 21538830 [TBL] [Abstract][Full Text] [Related]
18. Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action. Ankley GT; Bencic DC; Breen MS; Collette TW; Conolly RB; Denslow ND; Edwards SW; Ekman DR; Garcia-Reyero N; Jensen KM; Lazorchak JM; Martinović D; Miller DH; Perkins EJ; Orlando EF; Villeneuve DL; Wang RL; Watanabe KH Aquat Toxicol; 2009 May; 92(3):168-78. PubMed ID: 19261338 [TBL] [Abstract][Full Text] [Related]
19. Bioaccumulation potential of air contaminants: combining biological allometry, chemical equilibrium and mass-balances to predict accumulation of air pollutants in various mammals. Veltman K; McKone TE; Huijbregts MA; Hendriks AJ Toxicol Appl Pharmacol; 2009 Jul; 238(1):47-55. PubMed ID: 19389415 [TBL] [Abstract][Full Text] [Related]
20. Metabolic biotransformation half-lives in fish: QSAR modeling and consensus analysis. Papa E; van der Wal L; Arnot JA; Gramatica P Sci Total Environ; 2014 Feb; 470-471():1040-6. PubMed ID: 24239825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]