These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 19775246)

  • 21. Activity of a C. elegans GATA transcription factor, ELT-1, expressed in yeast.
    Shim YH; Bonner JJ; Blumenthal T
    J Mol Biol; 1995 Nov; 253(5):665-76. PubMed ID: 7473742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PF0610, a novel winged helix-turn-helix variant possessing a rubredoxin-like Zn ribbon motif from the hyperthermophilic archaeon, Pyrococcus furiosus.
    Wang X; Lee HS; Sugar FJ; Jenney FE; Adams MW; Prestegard JH
    Biochemistry; 2007 Jan; 46(3):752-61. PubMed ID: 17223696
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A complex signaling module governs the activity of MalT, the prototype of an emerging transactivator family.
    Danot O
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):435-40. PubMed ID: 11209048
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The putative DNA-binding protein Sto12a from the thermoacidophilic archaeon Sulfolobus tokodaii contains intrachain and interchain disulfide bonds.
    Shinkai A; Sekine S; Urushibata A; Terada T; Shirouzu M; Yokoyama S
    J Mol Biol; 2007 Oct; 372(5):1293-304. PubMed ID: 17720190
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The activity of the activation function 2 of the human hepatocyte nuclear factor 4 (HNF-4alpha) is differently modulated by F domains from various origins.
    Suaud L; Formstecher P; Laine B
    Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):161-9. PubMed ID: 10229671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An inhibitor domain in Sp3 regulates its glutamine-rich activation domains.
    Dennig J; Beato M; Suske G
    EMBO J; 1996 Oct; 15(20):5659-67. PubMed ID: 8896459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcription activation at the Escherichia coli melAB promoter: interactions of MelR with its DNA target site and with domain 4 of the RNA polymerase sigma subunit.
    Grainger DC; Webster CL; Belyaeva TA; Hyde EI; Busby SJ
    Mol Microbiol; 2004 Mar; 51(5):1297-309. PubMed ID: 14982625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of the Escherichia coli response regulator NarL.
    Baikalov I; Schröder I; Kaczor-Grzeskowiak M; Grzeskowiak K; Gunsalus RP; Dickerson RE
    Biochemistry; 1996 Aug; 35(34):11053-61. PubMed ID: 8780507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Common history at the origin of the position-function correlation in transcriptional regulators in archaea and bacteria.
    Pérez-Rueda E; Collado-Vides J
    J Mol Evol; 2001 Sep; 53(3):172-9. PubMed ID: 11523004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combinations of the alpha-helix-turn-alpha-helix motif of TetR with respective residues from LacI or 434Cro: DNA recognition, inducer binding, and urea-dependent denaturation.
    Backes H; Berens C; Helbl V; Walter S; Schmid FX; Hillen W
    Biochemistry; 1997 May; 36(18):5311-22. PubMed ID: 9154913
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the DNA-binding and transcriptional activation functions of human Fli-1 protein.
    Rao VN; Ohno T; Prasad DD; Bhattacharya G; Reddy ES
    Oncogene; 1993 Aug; 8(8):2167-73. PubMed ID: 8336942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. XylS-Pm promoter interactions through two helix-turn-helix motifs: identifying XylS residues important for DNA binding and activation.
    Domínguez-Cuevas P; Marín P; Marqués S; Ramos JL
    J Mol Biol; 2008 Jan; 375(1):59-69. PubMed ID: 18005985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Lrp family of transcriptional regulators.
    Brinkman AB; Ettema TJ; de Vos WM; van der Oost J
    Mol Microbiol; 2003 Apr; 48(2):287-94. PubMed ID: 12675791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. TBP domain symmetry in basal and activated archaeal transcription.
    Ouhammouch M; Hausner W; Geiduschek EP
    Mol Microbiol; 2009 Jan; 71(1):123-31. PubMed ID: 19007415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural analysis of BldR from Sulfolobus solfataricus provides insights into the molecular basis of transcriptional activation in Archaea by MarR family proteins.
    Di Fiore A; Fiorentino G; Vitale RM; Ronca R; Amodeo P; Pedone C; Bartolucci S; De Simone G
    J Mol Biol; 2009 May; 388(3):559-69. PubMed ID: 19298823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcription factor B contacts promoter DNA near the transcription start site of the archaeal transcription initiation complex.
    Renfrow MB; Naryshkin N; Lewis LM; Chen HT; Ebright RH; Scott RA
    J Biol Chem; 2004 Jan; 279(4):2825-31. PubMed ID: 14597623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel ligand-binding domain involved in regulation of amino acid metabolism in prokaryotes.
    Ettema TJ; Brinkman AB; Tani TH; Rafferty JB; Van Der Oost J
    J Biol Chem; 2002 Oct; 277(40):37464-8. PubMed ID: 12138170
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Archaeal chromatin and transcription.
    Reeve JN
    Mol Microbiol; 2003 May; 48(3):587-98. PubMed ID: 12694606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel archaeal regulatory protein, Sta1, activates transcription from viral promoters.
    Kessler A; Sezonov G; Guijarro JI; Desnoues N; Rose T; Delepierre M; Bell SD; Prangishvili D
    Nucleic Acids Res; 2006; 34(17):4837-45. PubMed ID: 16973899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure and nucleic acid-binding activity of the CRISPR-associated protein Csx1 of Pyrococcus furiosus.
    Kim YK; Kim YG; Oh BH
    Proteins; 2013 Feb; 81(2):261-70. PubMed ID: 22987782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.