These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19775718)

  • 1. Fate and impact of organics in an immersed membrane bioreactor applied to brine denitrification and ion exchange regeneration.
    McAdam EJ; Pawlett M; Judd SJ
    Water Res; 2010 Jan; 44(1):69-76. PubMed ID: 19775718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of precipitation on the treatment of real ion-exchange brine using the H(2)-based membrane biofilm reactor.
    Van Ginkel SW; Tang Y; Rittmann BE
    Water Sci Technol; 2011; 63(7):1453-8. PubMed ID: 21508550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perchlorate and nitrate treatment by ion exchange integrated with biological brine treatment.
    Lehman SG; Badruzzaman M; Adham S; Roberts DJ; Clifford DA
    Water Res; 2008 Feb; 42(4-5):969-76. PubMed ID: 17936327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of spent brine from a nitrate exchange process using combined biological denitrification and sulfate precipitation.
    Bae BU; Kim CH; Kim YI
    Water Sci Technol; 2004; 49(5-6):413-9. PubMed ID: 15137452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of NaCl on nitrate removal from ion-exchange spent brine in the membrane biofilm reactor (MBfR).
    Van Ginkel SW; Kim BO; Yang Z; Sittmann R; Sholin M; Micelli J; Rittmann BE
    Water Sci Technol; 2012; 65(1):100-4. PubMed ID: 22173412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of nitrate and perchlorate reduction in ion-exchange brine using the membrane biofilm reactor (MBfR).
    Van Ginkel SW; Ahn CH; Badruzzaman M; Roberts DJ; Lehman SG; Adham SS; Rittmann BE
    Water Res; 2008 Sep; 42(15):4197-205. PubMed ID: 18722637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cost-effective bioregeneration of nitrate-laden ion exchange brine through deliberate bicarbonate incorporation.
    Li Q; Huang B; Chen X; Shi Y
    Water Res; 2015 May; 75():33-42. PubMed ID: 25746960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling a novel ion exchange process for arsenic and nitrate removal.
    Kim J; Benjamin MM
    Water Res; 2004 Apr; 38(8):2053-62. PubMed ID: 15087186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance and life cycle environmental benefits of recycling spent ion exchange brines by catalytic treatment of nitrate.
    Choe JK; Bergquist AM; Jeong S; Guest JS; Werth CJ; Strathmann TJ
    Water Res; 2015 Sep; 80():267-80. PubMed ID: 26005787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable nitrate-contaminated water treatment using multi cycle ion-exchange/bioregeneration of nitrate selective resin.
    Ebrahimi S; Roberts DJ
    J Hazard Mater; 2013 Nov; 262():539-44. PubMed ID: 24095993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of cultures capable of reducing perchlorate and nitrate in high salt solutions.
    Cang Y; Roberts DJ; Clifford DA
    Water Res; 2004; 38(14-15):3322-30. PubMed ID: 15276749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Denitrification from drinking water using a membrane bioreactor: chemical and biochemical feasibility.
    McAdam EJ; Judd SJ
    Water Res; 2007 Oct; 41(18):4242-50. PubMed ID: 17614117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved brine recycling during nitrate removal using ion exchange.
    Bae BU; Jung YH; Han WW; Shin HS
    Water Res; 2002 Jul; 36(13):3330-40. PubMed ID: 12188132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of strong-base anion exchange O&M costs for hexavalent chromium treatment.
    Plummer S; Gorman C; Henrie T; Shimabuku K; Thompson R; Seidel C
    Water Res; 2018 Aug; 139():420-433. PubMed ID: 29709799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and simulation of oxygen-limited partial nitritation in a membrane-assisted bioreactor (MBR).
    Wyffels S; Van Hulle SW; Boeckx P; Volcke EI; Van Cleemput O; Vanrolleghem PA; Verstraete W
    Biotechnol Bioeng; 2004 Jun; 86(5):531-42. PubMed ID: 15129436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluidized bed reactor for the biological treatment of ion-exchange brine containing perchlorate and nitrate.
    Patel A; Zuo G; Lehman SG; Badruzzaman M; Clifford DA; Roberts DJ
    Water Res; 2008 Oct; 42(16):4291-8. PubMed ID: 18718630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating membrane gas diffusion into a membrane bioreactor for hydrogenotrophic denitrification of groundwater.
    Mo H; Oleszkiewicz JA; Cicek N; Rezania B
    Water Sci Technol; 2005; 51(6-7):357-64. PubMed ID: 16003997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Baffled membrane bioreactor (BMBR) for advanced wastewater treatment: easy modification of existing MBRs for efficient nutrient removal.
    Kimura K; Watanabe Y
    Water Sci Technol; 2005; 52(10-11):427-34. PubMed ID: 16459818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion exchange membrane textile bioreactor as a new alternative for drinking water denitrification.
    Berdous D; Akretche DE; Abderahmani A; Berdous S; Meknaci R
    Appl Microbiol Biotechnol; 2014 Jun; 98(11):5227-39. PubMed ID: 24609773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept.
    Matos CT; Velizarov S; Crespo JG; Reis MA
    Water Res; 2006 Jan; 40(2):231-40. PubMed ID: 16343587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.