These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 19775724)

  • 1. A combined recovery process of metals in spent lithium-ion batteries.
    Li J; Shi P; Wang Z; Chen Y; Chang CC
    Chemosphere; 2009 Nov; 77(8):1132-6. PubMed ID: 19775724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant.
    Li L; Ge J; Wu F; Chen R; Chen S; Wu B
    J Hazard Mater; 2010 Apr; 176(1-3):288-93. PubMed ID: 19954882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries.
    Fan B; Chen X; Zhou T; Zhang J; Xu B
    Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2016 May; 51():239-244. PubMed ID: 26965214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries.
    Sun L; Qiu K
    Waste Manag; 2012 Aug; 32(8):1575-82. PubMed ID: 22534072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans.
    Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH
    Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries.
    Li L; Ge J; Chen R; Wu F; Chen S; Zhang X
    Waste Manag; 2010 Dec; 30(12):2615-21. PubMed ID: 20817431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries.
    Sun L; Qiu K
    J Hazard Mater; 2011 Oct; 194():378-84. PubMed ID: 21872390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria.
    Xin B; Zhang D; Zhang X; Xia Y; Wu F; Chen S; Li L
    Bioresour Technol; 2009 Dec; 100(24):6163-9. PubMed ID: 19656671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques.
    Zhang T; He Y; Wang F; Ge L; Zhu X; Li H
    Waste Manag; 2014 Jun; 34(6):1051-8. PubMed ID: 24472715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective recovery of valuable metals from spent Li-ion batteries using solvent-impregnated resins.
    Guo F; Nishihama S; Yoshizuka K
    Environ Technol; 2013; 34(9-12):1307-17. PubMed ID: 24191463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries.
    Pant D; Dolker T
    Waste Manag; 2017 Feb; 60():689-695. PubMed ID: 27697424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes.
    Lupi C; Pasquali M; Dell'era A
    Waste Manag; 2005; 25(2):215-20. PubMed ID: 15737721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical characterisation of spent rechargeable batteries.
    Vassura I; Morselli L; Bernardi E; Passarini F
    Waste Manag; 2009 Aug; 29(8):2332-5. PubMed ID: 19423325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical process for electrode material of spent lithium ion batteries.
    Prabaharan G; Barik SP; Kumar N; Kumar L
    Waste Manag; 2017 Oct; 68():527-533. PubMed ID: 28711181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system.
    Peng C; Hamuyuni J; Wilson BP; Lundström M
    Waste Manag; 2018 Jun; 76():582-590. PubMed ID: 29510945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.