These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 19775788)
1. Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil. Juhasz AL; Smith E; Waller N; Stewart R; Weber J Environ Pollut; 2010 Feb; 158(2):585-91. PubMed ID: 19775788 [TBL] [Abstract][Full Text] [Related]
2. In vivo measurement, in vitro estimation and fugacity prediction of PAH bioavailability in post-remediated creosote-contaminated soil. Juhasz AL; Weber J; Stevenson G; Slee D; Gancarz D; Rofe A; Smith E Sci Total Environ; 2014 Mar; 473-474():147-54. PubMed ID: 24368196 [TBL] [Abstract][Full Text] [Related]
3. Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil. Sabaté J; Viñas M; Solanas AM Chemosphere; 2006 Jun; 63(10):1648-59. PubMed ID: 16325226 [TBL] [Abstract][Full Text] [Related]
4. Accumulation of polycyclic aromatic hydrocarbons from creosote-contaminated soil in selected plants and the oligochaete worm Enchytraeus crypticus. Allard AS; Malmberg M; Neilson AH; Remberger M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(11):2057-72. PubMed ID: 16287641 [TBL] [Abstract][Full Text] [Related]
5. Priming effects on PAH degradation and ecotoxicity during a phytoremediation experiment. Joner EJ; Hirmann D; Szolar OH; Todorovic D; Leyval C; Loibner AP Environ Pollut; 2004; 128(3):429-35. PubMed ID: 14720484 [TBL] [Abstract][Full Text] [Related]
6. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Gomez-Eyles JL; Sizmur T; Collins CD; Hodson ME Environ Pollut; 2011 Feb; 159(2):616-22. PubMed ID: 21035930 [TBL] [Abstract][Full Text] [Related]
7. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil. Bengtsson G; Törneman N; Yang X Environ Pollut; 2010 Sep; 158(9):2865-71. PubMed ID: 20630638 [TBL] [Abstract][Full Text] [Related]
8. Natural and assisted dissipation of polycyclic aromatic hydrocarbons in a long-term co-contaminated soil with creosote and potentially toxic elements. Madrid F; Rubio-Bellido M; Villaverde J; Peña A; Morillo E Sci Total Environ; 2019 Apr; 660():705-714. PubMed ID: 30743956 [TBL] [Abstract][Full Text] [Related]
9. Polycyclic aromatic hydrocarbons bioavailability in industrial and agricultural soils: Linking SPME and Tenax extraction with bioassays. Guo M; Gong Z; Li X; Allinson G; Rookes J; Cahill D Ecotoxicol Environ Saf; 2017 Jun; 140():191-197. PubMed ID: 28260684 [TBL] [Abstract][Full Text] [Related]
10. Fungal bioremediation of the creosote-contaminated soil: influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal and soil microbial community composition in the laboratory-scale study. Byss M; Elhottová D; Tříska J; Baldrian P Chemosphere; 2008 Nov; 73(9):1518-23. PubMed ID: 18782639 [TBL] [Abstract][Full Text] [Related]
11. Lability of polycyclic aromatic hydrocarbons in the rhizosphere. Cofield N; Banks MK; Schwab AP Chemosphere; 2008 Feb; 70(9):1644-52. PubMed ID: 17900653 [TBL] [Abstract][Full Text] [Related]
12. Native oxy-PAHs, N-PACs, and PAHs in historically contaminated soils from Sweden, Belgium, and France: their soil-porewater partitioning behavior, bioaccumulation in Enchytraeus crypticus, and bioavailability. Arp HP; Lundstedt S; Josefsson S; Cornelissen G; Enell A; Allard AS; Kleja DB Environ Sci Technol; 2014 Oct; 48(19):11187-95. PubMed ID: 25216345 [TBL] [Abstract][Full Text] [Related]
13. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil. Bezza FA; Chirwa EM Chemosphere; 2016 Feb; 144():635-44. PubMed ID: 26408261 [TBL] [Abstract][Full Text] [Related]
14. Bacteria involved in biodegradation of creosote PAH - A case study of long-term contaminated industrial area. Smułek W; Sydow M; Zabielska-Matejuk J; Kaczorek E Ecotoxicol Environ Saf; 2020 Jan; 187():109843. PubMed ID: 31678701 [TBL] [Abstract][Full Text] [Related]
15. Supercritical carbon dioxide extraction as a predictor of polycyclic aromatic hydrocarbon bioaccumulation and toxicity by earthworms in manufactured-gas plant site soils. Kreitinger JP; Quiñones-Rivera A; Neuhauser EF; Alexander M; Hawthorne SB Environ Toxicol Chem; 2007 Sep; 26(9):1809-17. PubMed ID: 17705650 [TBL] [Abstract][Full Text] [Related]
16. GC-MS-MS analysis of bacterial fatty acids in heavily creosote-contaminated soil samples. Byss M; Tríska J; Elhottová D Anal Bioanal Chem; 2007 Feb; 387(4):1573-7. PubMed ID: 17219099 [TBL] [Abstract][Full Text] [Related]
17. [Mild solvent extraction technique for the evaluation of PAHs bioavailability]. Lü ZY; Yang XL; Wang F; Zhang YP; Jiang X Huan Jing Ke Xue; 2011 Aug; 32(8):2462-9. PubMed ID: 22619979 [TBL] [Abstract][Full Text] [Related]
18. Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Parrish ZD; White JC; Isleyen M; Gent MP; Iannucci-Berger W; Eitzer BD; Kelsey JW; Mattina MI Chemosphere; 2006 Jul; 64(4):609-18. PubMed ID: 16337258 [TBL] [Abstract][Full Text] [Related]
19. Influence of the bioaccessible fraction of polycyclic aromatic hydrocarbons on the ecotoxicity of historically contaminated soils. Čvančarová M; Křesinová Z; Cajthaml T J Hazard Mater; 2013 Jun; 254-255():116-124. PubMed ID: 23611796 [TBL] [Abstract][Full Text] [Related]
20. Formation of PAH Derivatives and Increased Developmental Toxicity during Steam Enhanced Extraction Remediation of Creosote Contaminated Superfund Soil. Trine LSD; Davis EL; Roper C; Truong L; Tanguay RL; Simonich SLM Environ Sci Technol; 2019 Apr; 53(8):4460-4469. PubMed ID: 30957485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]