BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 19775961)

  • 1. Real-time robot path planning based on a modified pulse-coupled neural network model.
    Qu H; Yang SX; Willms AR; Yi Z
    IEEE Trans Neural Netw; 2009 Nov; 20(11):1724-39. PubMed ID: 19775961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient dynamic system for real-time robot-path planning.
    Willms AR; Yang SX
    IEEE Trans Syst Man Cybern B Cybern; 2006 Aug; 36(4):755-66. PubMed ID: 16903362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural network approaches to dynamic collision-free trajectory generation.
    Yang SX; Meng M
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(3):302-18. PubMed ID: 18244794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient neural network approach to dynamic robot motion planning.
    Yang SX; Meng M
    Neural Netw; 2000 Mar; 13(2):143-8. PubMed ID: 10935758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic wave expansion neural network model for robot motion planning in time-varying environments.
    Lebedev DV; Steil JJ; Ritter HJ
    Neural Netw; 2005 Apr; 18(3):267-85. PubMed ID: 15896575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grid-Based Mobile Robot Path Planning Using Aging-Based Ant Colony Optimization Algorithm in Static and Dynamic Environments.
    Ajeil FH; Ibraheem IK; Azar AT; Humaidi AJ
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32231091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neural network approach to complete coverage path planning.
    Yang SX; Luo C
    IEEE Trans Syst Man Cybern B Cybern; 2004 Feb; 34(1):718-25. PubMed ID: 15369113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time collision-free motion planning of a mobile robot using a Neural Dynamics-based approach.
    Yang SX; Meng MH
    IEEE Trans Neural Netw; 2003; 14(6):1541-52. PubMed ID: 18244598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Application of Self-Organizing Map for Multirobot Multigoal Path Planning with Minmax Objective.
    Faigl J
    Comput Intell Neurosci; 2016; 2016():2720630. PubMed ID: 27340395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired neural network for real-time cooperative hunting by multirobots in unknown environments.
    Ni J; Yang SX
    IEEE Trans Neural Netw; 2011 Dec; 22(12):2062-77. PubMed ID: 22042152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neural network approach to dynamic task assignment of multirobots.
    Zhu A; Yang SX
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1278-87. PubMed ID: 17001987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prune-able fuzzy ART neural architecture for robot map learning and navigation in dynamic environments.
    Araújo R
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1235-49. PubMed ID: 17001984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time robot path planning via a distance-propagating dynamic system with obstacle clearance.
    Willms AR; Yang SX
    IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):884-93. PubMed ID: 18558550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual adaptive dynamic control of mobile robots using neural networks.
    Bugeja MK; Fabri SG; Camilleri L
    IEEE Trans Syst Man Cybern B Cybern; 2009 Feb; 39(1):129-41. PubMed ID: 19150763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-organization of spiking neural network that generates autonomous behavior in a real mobile robot.
    Alnajjar F; Murase K
    Int J Neural Syst; 2006 Aug; 16(4):229-39. PubMed ID: 16972312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A path planning approach for mobile robots using short and safe Q-learning.
    Du H; Hao B; Zhao J; Zhang J; Wang Q; Yuan Q
    PLoS One; 2022; 17(9):e0275100. PubMed ID: 36162062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning anticipation via spiking networks: application to navigation control.
    Arena P; Fortuna L; Frasca M; Patané L
    IEEE Trans Neural Netw; 2009 Feb; 20(2):202-16. PubMed ID: 19150797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Case study on a self-organizing spiking neural network for robot navigation.
    Nichols E; McDaid LJ; Siddique NH
    Int J Neural Syst; 2010 Dec; 20(6):501-8. PubMed ID: 21117272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A real-time spiking cerebellum model for learning robot control.
    Carrillo RR; Ros E; Boucheny C; Coenen OJ
    Biosystems; 2008; 94(1-2):18-27. PubMed ID: 18616974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Path planning for autonomous mobile robots using multi-objective evolutionary particle swarm optimization.
    Thammachantuek I; Ketcham M
    PLoS One; 2022; 17(8):e0271924. PubMed ID: 35984778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.