These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19776008)

  • 1. Geranylgeranyl pyrophosphate is a potent regulator of HRD-dependent 3-Hydroxy-3-methylglutaryl-CoA reductase degradation in yeast.
    Garza RM; Tran PN; Hampton RY
    J Biol Chem; 2009 Dec; 284(51):35368-80. PubMed ID: 19776008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sterol-sensing domain (SSD) directly mediates signal-regulated endoplasmic reticulum-associated degradation (ERAD) of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase isozyme Hmg2.
    Theesfeld CL; Pourmand D; Davis T; Garza RM; Hampton RY
    J Biol Chem; 2011 Jul; 286(30):26298-307. PubMed ID: 21628456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An autonomous, but INSIG-modulated, role for the sterol sensing domain in mallostery-regulated ERAD of yeast HMG-CoA reductase.
    Wangeline MA; Hampton RY
    J Biol Chem; 2021; 296():100063. PubMed ID: 33184059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in eukaryotes.
    Gardner RG; Hampton RY
    J Biol Chem; 1999 Oct; 274(44):31671-8. PubMed ID: 10531376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquitin-mediated regulation of 3-hydroxy-3-methylglutaryl-CoA reductase.
    Hampton RY; Bhakta H
    Proc Natl Acad Sci U S A; 1997 Nov; 94(24):12944-8. PubMed ID: 9371780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Mallostery"-ligand-dependent protein misfolding enables physiological regulation by ERAD.
    Wangeline MA; Hampton RY
    J Biol Chem; 2018 Sep; 293(38):14937-14950. PubMed ID: 30018140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolically regulated endoplasmic reticulum-associated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase: evidence for requirement of a geranylgeranylated protein.
    Leichner GS; Avner R; Harats D; Roitelman J
    J Biol Chem; 2011 Sep; 286(37):32150-61. PubMed ID: 21778231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin-induced gene protein (INSIG)-dependent sterol regulation of Hmg2 endoplasmic reticulum-associated degradation (ERAD) in yeast.
    Theesfeld CL; Hampton RY
    J Biol Chem; 2013 Mar; 288(12):8519-8530. PubMed ID: 23306196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence determinants for regulated degradation of yeast 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein.
    Gardner R; Cronin S; Leader B; Rine J; Hampton R
    Mol Biol Cell; 1998 Sep; 9(9):2611-26. PubMed ID: 9725915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast.
    Hampton RY; Rine J
    J Cell Biol; 1994 Apr; 125(2):299-312. PubMed ID: 8163547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An oxysterol-derived positive signal for 3-hydroxy- 3-methylglutaryl-CoA reductase degradation in yeast.
    Gardner RG; Shan H; Matsuda SP; Hampton RY
    J Biol Chem; 2001 Mar; 276(12):8681-94. PubMed ID: 11134013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UbiA prenyltransferase domain-containing protein-1 modulates HMG-CoA reductase degradation to coordinate synthesis of sterol and nonsterol isoprenoids.
    Schumacher MM; Jun DJ; Johnson BM; DeBose-Boyd RA
    J Biol Chem; 2018 Jan; 293(1):312-323. PubMed ID: 29167270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Posttranslational Regulation of HMG CoA Reductase, the Rate-Limiting Enzyme in Synthesis of Cholesterol.
    Schumacher MM; DeBose-Boyd RA
    Annu Rev Biochem; 2021 Jun; 90():659-679. PubMed ID: 34153214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein.
    Hampton RY; Gardner RG; Rine J
    Mol Biol Cell; 1996 Dec; 7(12):2029-44. PubMed ID: 8970163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation.
    Gardner RG; Shearer AG; Hampton RY
    Mol Cell Biol; 2001 Jul; 21(13):4276-91. PubMed ID: 11390656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural control of endoplasmic reticulum-associated degradation: effect of chemical chaperones on 3-hydroxy-3-methylglutaryl-CoA reductase.
    Shearer AG; Hampton RY
    J Biol Chem; 2004 Jan; 279(1):188-96. PubMed ID: 14570925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro analysis of Hrd1p-mediated retrotranslocation of its multispanning membrane substrate 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase.
    Garza RM; Sato BK; Hampton RY
    J Biol Chem; 2009 May; 284(22):14710-22. PubMed ID: 19324879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different subcellular localization of Saccharomyces cerevisiae HMG-CoA reductase isozymes at elevated levels corresponds to distinct endoplasmic reticulum membrane proliferations.
    Koning AJ; Roberts CJ; Wright RL
    Mol Biol Cell; 1996 May; 7(5):769-89. PubMed ID: 8744950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of farnesyl pyrophosphate accumulation on calvarial osteoblast differentiation.
    Weivoda MM; Hohl RJ
    Endocrinology; 2011 Aug; 152(8):3113-22. PubMed ID: 21586555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of HMG-CoA reductase degradation requires the P-type ATPase Cod1p/Spf1p.
    Cronin SR; Khoury A; Ferry DK; Hampton RY
    J Cell Biol; 2000 Mar; 148(5):915-24. PubMed ID: 10704442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.