These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19776276)

  • 1. The neural network for chemotaxis to tastants in Caenorhabditis elegans is specialized for temporal differentiation.
    Thiele TR; Faumont S; Lockery SR
    J Neurosci; 2009 Sep; 29(38):11904-11. PubMed ID: 19776276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis.
    Suzuki H; Thiele TR; Faumont S; Ezcurra M; Lockery SR; Schafer WR
    Nature; 2008 Jul; 454(7200):114-7. PubMed ID: 18596810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Gustatory Neural Circuit of
    Wang L; Sato H; Satoh Y; Tomioka M; Kunitomo H; Iino Y
    J Neurosci; 2017 Feb; 37(8):2097-2111. PubMed ID: 28126744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Step-response analysis of chemotaxis in Caenorhabditis elegans.
    Miller AC; Thiele TR; Faumont S; Moravec ML; Lockery SR
    J Neurosci; 2005 Mar; 25(13):3369-78. PubMed ID: 15800192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of chemotaxis and associative learning in C. elegans.
    Appleby PA
    Biol Cybern; 2012 Sep; 106(6-7):373-87. PubMed ID: 22824944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans.
    Pierce-Shimomura JT; Faumont S; Gaston MR; Pearson BJ; Lockery SR
    Nature; 2001 Apr; 410(6829):694-8. PubMed ID: 11287956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases.
    Ortiz CO; Faumont S; Takayama J; Ahmed HK; Goldsmith AD; Pocock R; McCormick KE; Kunimoto H; Iino Y; Lockery S; Hobert O
    Curr Biol; 2009 Jun; 19(12):996-1004. PubMed ID: 19523832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans.
    Bargmann CI; Horvitz HR
    Neuron; 1991 Nov; 7(5):729-42. PubMed ID: 1660283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans.
    Izquierdo EJ; Lockery SR
    J Neurosci; 2010 Sep; 30(39):12908-17. PubMed ID: 20881110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of experience-dependent bidirectional chemotaxis by a neural circuit switch in Caenorhabditis elegans.
    Satoh Y; Sato H; Kunitomo H; Fei X; Hashimoto K; Iino Y
    J Neurosci; 2014 Nov; 34(47):15631-7. PubMed ID: 25411491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans.
    Leinwand SG; Chalasani SH
    Nat Neurosci; 2013 Oct; 16(10):1461-7. PubMed ID: 24013594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans.
    Iino Y; Yoshida K
    J Neurosci; 2009 Apr; 29(17):5370-80. PubMed ID: 19403805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C. elegans ceh-36 gene encodes a putative homemodomain transcription factor involved in chemosensory functions of ASE and AWC neurons.
    Koga M; Ohshima Y
    J Mol Biol; 2004 Feb; 336(3):579-87. PubMed ID: 15095973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans.
    Adachi T; Kunitomo H; Tomioka M; Ohno H; Okochi Y; Mori I; Iino Y
    Genetics; 2010 Dec; 186(4):1309-19. PubMed ID: 20837997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans.
    Hukema RK; Rademakers S; Dekkers MP; Burghoorn J; Jansen G
    EMBO J; 2006 Jan; 25(2):312-22. PubMed ID: 16407969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode.
    Chang S; Johnston RJ; Frøkjaer-Jensen C; Lockery S; Hobert O
    Nature; 2004 Aug; 430(7001):785-9. PubMed ID: 15306811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of Caenorhabditis elegans chemotaxis by cultivation and assay temperatures.
    Adachi R; Wakabayashi T; Oda N; Shingai R
    Neurosci Res; 2008 Mar; 60(3):300-6. PubMed ID: 18192049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple sensory neurons mediate starvation-dependent aversive navigation in
    Jang MS; Toyoshima Y; Tomioka M; Kunitomo H; Iino Y
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18673-18683. PubMed ID: 31455735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans.
    Oda S; Tomioka M; Iino Y
    J Neurophysiol; 2011 Jul; 106(1):301-8. PubMed ID: 21525368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans.
    Kunitomo H; Sato H; Iwata R; Satoh Y; Ohno H; Yamada K; Iino Y
    Nat Commun; 2013; 4():2210. PubMed ID: 23887678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.