BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19776276)

  • 1. The neural network for chemotaxis to tastants in Caenorhabditis elegans is specialized for temporal differentiation.
    Thiele TR; Faumont S; Lockery SR
    J Neurosci; 2009 Sep; 29(38):11904-11. PubMed ID: 19776276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis.
    Suzuki H; Thiele TR; Faumont S; Ezcurra M; Lockery SR; Schafer WR
    Nature; 2008 Jul; 454(7200):114-7. PubMed ID: 18596810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Gustatory Neural Circuit of
    Wang L; Sato H; Satoh Y; Tomioka M; Kunitomo H; Iino Y
    J Neurosci; 2017 Feb; 37(8):2097-2111. PubMed ID: 28126744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Step-response analysis of chemotaxis in Caenorhabditis elegans.
    Miller AC; Thiele TR; Faumont S; Moravec ML; Lockery SR
    J Neurosci; 2005 Mar; 25(13):3369-78. PubMed ID: 15800192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of chemotaxis and associative learning in C. elegans.
    Appleby PA
    Biol Cybern; 2012 Sep; 106(6-7):373-87. PubMed ID: 22824944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans.
    Pierce-Shimomura JT; Faumont S; Gaston MR; Pearson BJ; Lockery SR
    Nature; 2001 Apr; 410(6829):694-8. PubMed ID: 11287956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateralized gustatory behavior of C. elegans is controlled by specific receptor-type guanylyl cyclases.
    Ortiz CO; Faumont S; Takayama J; Ahmed HK; Goldsmith AD; Pocock R; McCormick KE; Kunimoto H; Iino Y; Lockery S; Hobert O
    Curr Biol; 2009 Jun; 19(12):996-1004. PubMed ID: 19523832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans.
    Bargmann CI; Horvitz HR
    Neuron; 1991 Nov; 7(5):729-42. PubMed ID: 1660283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution and analysis of minimal neural circuits for klinotaxis in Caenorhabditis elegans.
    Izquierdo EJ; Lockery SR
    J Neurosci; 2010 Sep; 30(39):12908-17. PubMed ID: 20881110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of experience-dependent bidirectional chemotaxis by a neural circuit switch in Caenorhabditis elegans.
    Satoh Y; Sato H; Kunitomo H; Fei X; Hashimoto K; Iino Y
    J Neurosci; 2014 Nov; 34(47):15631-7. PubMed ID: 25411491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans.
    Leinwand SG; Chalasani SH
    Nat Neurosci; 2013 Oct; 16(10):1461-7. PubMed ID: 24013594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans.
    Iino Y; Yoshida K
    J Neurosci; 2009 Apr; 29(17):5370-80. PubMed ID: 19403805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C. elegans ceh-36 gene encodes a putative homemodomain transcription factor involved in chemosensory functions of ASE and AWC neurons.
    Koga M; Ohshima Y
    J Mol Biol; 2004 Feb; 336(3):579-87. PubMed ID: 15095973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversal of salt preference is directed by the insulin/PI3K and Gq/PKC signaling in Caenorhabditis elegans.
    Adachi T; Kunitomo H; Tomioka M; Ohno H; Okochi Y; Mori I; Iino Y
    Genetics; 2010 Dec; 186(4):1309-19. PubMed ID: 20837997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans.
    Hukema RK; Rademakers S; Dekkers MP; Burghoorn J; Jansen G
    EMBO J; 2006 Jan; 25(2):312-22. PubMed ID: 16407969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode.
    Chang S; Johnston RJ; Frøkjaer-Jensen C; Lockery S; Hobert O
    Nature; 2004 Aug; 430(7001):785-9. PubMed ID: 15306811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of Caenorhabditis elegans chemotaxis by cultivation and assay temperatures.
    Adachi R; Wakabayashi T; Oda N; Shingai R
    Neurosci Res; 2008 Mar; 60(3):300-6. PubMed ID: 18192049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple sensory neurons mediate starvation-dependent aversive navigation in
    Jang MS; Toyoshima Y; Tomioka M; Kunitomo H; Iino Y
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18673-18683. PubMed ID: 31455735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuronal plasticity regulated by the insulin-like signaling pathway underlies salt chemotaxis learning in Caenorhabditis elegans.
    Oda S; Tomioka M; Iino Y
    J Neurophysiol; 2011 Jul; 106(1):301-8. PubMed ID: 21525368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans.
    Kunitomo H; Sato H; Iwata R; Satoh Y; Ohno H; Yamada K; Iino Y
    Nat Commun; 2013; 4():2210. PubMed ID: 23887678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.