These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 19777226)

  • 21. Enzyme research and applications in biotechnological intensification of biogas production.
    Parawira W
    Crit Rev Biotechnol; 2012 Jun; 32(2):172-86. PubMed ID: 21851320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The future of anaerobic digestion and biogas utilization.
    Holm-Nielsen JB; Al Seadi T; Oleskowicz-Popiel P
    Bioresour Technol; 2009 Nov; 100(22):5478-84. PubMed ID: 19217772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment.
    Styles D; Dominguez EM; Chadwick D
    Sci Total Environ; 2016 Aug; 560-561():241-53. PubMed ID: 27101461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation.
    Chiumenti A; da Borso F; Limina S
    Waste Manag; 2018 Jan; 71():704-710. PubMed ID: 28389052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molten carbonate fuel cells fed with biogas: combating H(2)S.
    Ciccoli R; Cigolotti V; Lo Presti R; Massi E; McPhail SJ; Monteleone G; Moreno A; Naticchioni V; Paoletti C; Simonetti E; Zaza F
    Waste Manag; 2010 Jun; 30(6):1018-24. PubMed ID: 20211554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodiesel from conventional feedstocks.
    Du W; Liu DH
    Adv Biochem Eng Biotechnol; 2012; 128():53-68. PubMed ID: 22085921
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation.
    Uellendahl H; Wang G; Møller HB; Jørgensen U; Skiadas IV; Gavala HN; Ahring BK
    Water Sci Technol; 2008; 58(9):1841-7. PubMed ID: 19029727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept.
    Mussgnug JH; Klassen V; Schlüter A; Kruse O
    J Biotechnol; 2010 Oct; 150(1):51-6. PubMed ID: 20691224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recovery of methane-rich gas from solid-feed anaerobic digestion of ipomoea (Ipomoea carnea).
    Sankar Ganesh P; Sanjeevi R; Gajalakshmi S; Ramasamy EV; Abbasi SA
    Bioresour Technol; 2008 Mar; 99(4):812-8. PubMed ID: 17368892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Minimization of greenhouse gas emission by application of anaerobic digestion process with biogas utilization.
    Yasui H; Komatsu K; Goel R; Matsuhashi R; Ohashi A; Harada H
    Water Sci Technol; 2005; 52(1-2):545-52. PubMed ID: 16180476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrogen fertiliser production based on biogas - energy input, environmental impact and land use.
    Ahlgren S; Bernesson S; Nordberg K; Hansson PA
    Bioresour Technol; 2010 Sep; 101(18):7192-5. PubMed ID: 20435469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops.
    Lübken M; Wichern M; Schlattmann M; Gronauer A; Horn H
    Water Res; 2007 Oct; 41(18):4085-96. PubMed ID: 17631938
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Greenhouse gas production in wastewater treatment: process selection is the major factor.
    Keller J; Hartley K
    Water Sci Technol; 2003; 47(12):43-8. PubMed ID: 12926668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of greenhouse gas emissions from 10 biogas plants within the agricultural sector.
    Liebetrau J; Reinelt T; Clemens J; Hafermann C; Friehe J; Weiland P
    Water Sci Technol; 2013; 67(6):1370-9. PubMed ID: 23508164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biogas upgrading and utilization: Current status and perspectives.
    Angelidaki I; Treu L; Tsapekos P; Luo G; Campanaro S; Wenzel H; Kougias PG
    Biotechnol Adv; 2018; 36(2):452-466. PubMed ID: 29360505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conceptual design of an integrated hydrothermal liquefaction and biogas plant for sustainable bioenergy production.
    Hoffmann J; Rudra S; Toor SS; Holm-Nielsen JB; Rosendahl LA
    Bioresour Technol; 2013 Feb; 129():402-10. PubMed ID: 23262018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioenergy from permanent grassland--a review: 1. Biogas.
    Prochnow A; Heiermann M; Plöchl M; Linke B; Idler C; Amon T; Hobbs PJ
    Bioresour Technol; 2009 Nov; 100(21):4931-44. PubMed ID: 19546001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sustainable sunlight to biogas is via marginal organics.
    Shilton A; Guieysse B
    Curr Opin Biotechnol; 2010 Jun; 21(3):287-91. PubMed ID: 20378331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M; Wu Y; Wang M
    Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimisation of the anaerobic digestion of agricultural resources.
    Ward AJ; Hobbs PJ; Holliman PJ; Jones DL
    Bioresour Technol; 2008 Nov; 99(17):7928-40. PubMed ID: 18406612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.