BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19777585)

  • 1. High stability of self-assembled peptide nanowires against thermal, chemical, and proteolytic attacks.
    Ryu J; Park CB
    Biotechnol Bioeng; 2010 Feb; 105(2):221-30. PubMed ID: 19777585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled diphenylalanine nanowires for cellular studies and sensor applications.
    Sasso L; Vedarethinam I; Emnéus J; Svendsen WE; Castillo-León J
    J Nanosci Nanotechnol; 2012 Apr; 12(4):3077-83. PubMed ID: 22849068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications.
    Adler-Abramovich L; Reches M; Sedman VL; Allen S; Tendler SJ; Gazit E
    Langmuir; 2006 Jan; 22(3):1313-20. PubMed ID: 16430299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of diphenylalanine/polyaniline core/shell conducting nanowires by peptide self-assembly.
    Ryu J; Park CB
    Angew Chem Int Ed Engl; 2009; 48(26):4820-3. PubMed ID: 19466726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemically and thermally stable silica nanowires with a β-sheet peptide core for bionanotechnology.
    Al-Garawi ZS; Kostakis GE; Serpell LC
    J Nanobiotechnology; 2016 Dec; 14(1):79. PubMed ID: 27905946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillarity induced large area patterning of peptide nanowires.
    Park JS; Han TH; Oh JK; Kim SO
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6954-7. PubMed ID: 21137832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage.
    Ryu J; Kim SW; Kang K; Park CB
    ACS Nano; 2010 Jan; 4(1):159-64. PubMed ID: 20000841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of diphenylalanine peptide nanotubes in solution.
    Andersen KB; Castillo-Leon J; Hedström M; Svendsen WE
    Nanoscale; 2011 Mar; 3(3):994-8. PubMed ID: 21132174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of the release of phenylalanine from diphenylalanine nanotubes.
    Sedman VL; Adler-Abramovich L; Allen S; Gazit E; Tendler SJ
    J Am Chem Soc; 2006 May; 128(21):6903-8. PubMed ID: 16719470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations.
    Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W
    ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.
    Brown N; Lei J; Zhan C; Shimon LJW; Adler-Abramovich L; Wei G; Gazit E
    ACS Nano; 2018 Apr; 12(4):3253-3262. PubMed ID: 29558116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the effects of peptoid substitutions in self-assembly of Fmoc-diphenylalanine derivatives.
    Rajbhandary A; Nilsson BL
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27696352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of water in directing diphenylalanine assembly into nanotubes and nanowires.
    Kim J; Han TH; Kim YI; Park JS; Choi J; Churchill DG; Kim SO; Ihee H
    Adv Mater; 2010 Feb; 22(5):583-7. PubMed ID: 20217753
    [No Abstract]   [Full Text] [Related]  

  • 15. New archetypes in self-assembled Phe-Phe motif induced nanostructures from nucleoside conjugated-diphenylalanines.
    Datta D; Tiwari O; Ganesh KN
    Nanoscale; 2018 Feb; 10(7):3212-3224. PubMed ID: 29379926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoluminescence of Diphenylalanine Peptide Nano/Microstructures: From Mechanisms to Applications.
    Gan Z; Xu H
    Macromol Rapid Commun; 2017 Nov; 38(22):. PubMed ID: 28902961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Casting metal nanowires within discrete self-assembled peptide nanotubes.
    Reches M; Gazit E
    Science; 2003 Apr; 300(5619):625-7. PubMed ID: 12714741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of Arg-Phe nanostructures via the solid-vapor phase method.
    Liberato MS; Kogikoski S; Silva ER; Coutinho-Neto MD; Scott LP; Silva RH; Oliveira VX; Ando RA; Alves WA
    J Phys Chem B; 2013 Jan; 117(3):733-40. PubMed ID: 23286315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic solvents mediate self-assembly of GAV-9 peptide on mica surface.
    Li H; Zhang F; Zhang Y; He J; Hu J
    Acta Biochim Biophys Sin (Shanghai); 2007 Apr; 39(4):285-9. PubMed ID: 17417684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes.
    Guo C; Luo Y; Zhou R; Wei G
    ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.