These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 19777815)
1. [Effects of mutational sptl5 gene to xylose utilization of Saccharomyces cerevisiae]. Liu H; Tang W; Lai C; Yan M; Xu L; Ouyang P Sheng Wu Gong Cheng Xue Bao; 2009 Jun; 25(6):875-9. PubMed ID: 19777815 [TBL] [Abstract][Full Text] [Related]
2. gTME for improved xylose fermentation of Saccharomyces cerevisiae. Liu H; Yan M; Lai C; Xu L; Ouyang P Appl Biochem Biotechnol; 2010 Jan; 160(2):574-82. PubMed ID: 19067246 [TBL] [Abstract][Full Text] [Related]
3. gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate. Liu H; Liu K; Yan M; Xu L; Ouyang P Appl Biochem Biotechnol; 2011 Aug; 164(7):1150-9. PubMed ID: 21365181 [TBL] [Abstract][Full Text] [Related]
4. [gTME for construction of recombinant yeast co-fermenting xylose and glucose]. Liu H; Xu L; Yan M; Lai C; Ouyang P Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):1010-5. PubMed ID: 18807984 [TBL] [Abstract][Full Text] [Related]
5. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883 [TBL] [Abstract][Full Text] [Related]
7. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Jeppsson M; Johansson B; Jensen PR; Hahn-Hägerdal B; Gorwa-Grauslund MF Yeast; 2003 Nov; 20(15):1263-72. PubMed ID: 14618564 [TBL] [Abstract][Full Text] [Related]
8. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Bera AK; Sedlak M; Khan A; Ho NW Appl Microbiol Biotechnol; 2010 Aug; 87(5):1803-11. PubMed ID: 20449743 [TBL] [Abstract][Full Text] [Related]
9. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Zaldivar J; Borges A; Johansson B; Smits HP; Villas-Bôas SG; Nielsen J; Olsson L Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):436-42. PubMed ID: 12172606 [TBL] [Abstract][Full Text] [Related]
10. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Madhavan A; Tamalampudi S; Srivastava A; Fukuda H; Bisaria VS; Kondo A Appl Microbiol Biotechnol; 2009 Apr; 82(6):1037-47. PubMed ID: 19125247 [TBL] [Abstract][Full Text] [Related]
11. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. Kuyper M; Winkler AA; van Dijken JP; Pronk JT FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955 [TBL] [Abstract][Full Text] [Related]
12. Global transcription engineering of brewer's yeast enhances the fermentation performance under high-gravity conditions. Gao C; Wang Z; Liang Q; Qi Q Appl Microbiol Biotechnol; 2010 Aug; 87(5):1821-7. PubMed ID: 20461507 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: I. Influence of the ratio of glucose/xylose on ethanol production. Matsushika A; Sawayama S Appl Biochem Biotechnol; 2013 Feb; 169(3):712-21. PubMed ID: 23271622 [TBL] [Abstract][Full Text] [Related]
16. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism. Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550 [TBL] [Abstract][Full Text] [Related]
17. Effect of initial cell concentration on ethanol production by flocculent Saccharomyces cerevisiae with xylose-fermenting ability. Matsushika A; Sawayama S Appl Biochem Biotechnol; 2010 Nov; 162(7):1952-60. PubMed ID: 20432070 [TBL] [Abstract][Full Text] [Related]
18. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. Casey E; Sedlak M; Ho NW; Mosier NS FEMS Yeast Res; 2010 Jun; 10(4):385-93. PubMed ID: 20402796 [TBL] [Abstract][Full Text] [Related]
19. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466 [TBL] [Abstract][Full Text] [Related]
20. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]