These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 19777995)

  • 1. Flip-flop is the rate-limiting step for transport of free fatty acids across lipid vesicle membranes.
    Carley AN; Kleinfeld AM
    Biochemistry; 2009 Nov; 48(43):10437-45. PubMed ID: 19777995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of long-chain native fatty acids across lipid bilayer membranes indicates that transbilayer flip-flop is rate limiting.
    Kleinfeld AM; Chu P; Romero C
    Biochemistry; 1997 Nov; 36(46):14146-58. PubMed ID: 9369487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid-albumin complexes and the determination of the transport of long chain free fatty acids across membranes.
    Cupp D; Kampf JP; Kleinfeld AM
    Biochemistry; 2004 Apr; 43(15):4473-81. PubMed ID: 15078093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flip-flop is slow and rate limiting for the movement of long chain anthroyloxy fatty acids across lipid vesicles.
    Kleinfeld AM; Chu P; Storch J
    Biochemistry; 1997 May; 36(19):5702-11. PubMed ID: 9153410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatty acid flip-flop in a model membrane is faster than desorption into the aqueous phase.
    Simard JR; Pillai BK; Hamilton JA
    Biochemistry; 2008 Sep; 47(35):9081-9. PubMed ID: 18693753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different mechanisms of free fatty acid flip-flop and dissociation revealed by temperature and molecular species dependence of transport across lipid vesicles.
    Kampf JP; Cupp D; Kleinfeld AM
    J Biol Chem; 2006 Jul; 281(30):21566-21574. PubMed ID: 16737957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of long-chain native fatty acids across human erythrocyte ghost membranes.
    Kleinfeld AM; Storms S; Watts M
    Biochemistry; 1998 Jun; 37(22):8011-9. PubMed ID: 9609694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and mechanism of long-chain fatty acid transport into phosphatidylcholine vesicles from various donor systems.
    Thomas RM; Baici A; Werder M; Schulthess G; Hauser H
    Biochemistry; 2002 Feb; 41(5):1591-601. PubMed ID: 11814353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How fatty acids of different chain length enter and leave cells by free diffusion.
    Kamp F; Hamilton JA
    Prostaglandins Leukot Essent Fatty Acids; 2006 Sep; 75(3):149-59. PubMed ID: 16829065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of anthracyclines and mitoxantrone across membranes by a flip-flop mechanism.
    Regev R; Yeheskely-Hayon D; Katzir H; Eytan GD
    Biochem Pharmacol; 2005 Jul; 70(1):161-9. PubMed ID: 15919056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transbilayer movement of fluorescent phospholipids in Bacillus megaterium membrane vesicles.
    Hrafnsdóttir S; Nichols JW; Menon AK
    Biochemistry; 1997 Apr; 36(16):4969-78. PubMed ID: 9125519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transbilayer lipid redistribution accompanies poly(ethylene glycol) treatment of model membranes but is not induced by fusion.
    Lentz BR; Talbot W; Lee J; Zheng LX
    Biochemistry; 1997 Feb; 36(8):2076-83. PubMed ID: 9047306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton flux induced by free fatty acids across phospholipid bilayers: new evidences based on short-circuit measurements in planar lipid membranes.
    Arcisio-Miranda M; Abdulkader F; Brunaldi K; Curi R; Procopio J
    Arch Biochem Biophys; 2009 Apr; 484(1):63-9. PubMed ID: 19423422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociation of long and very long chain fatty acids from phospholipid bilayers.
    Zhang F; Kamp F; Hamilton JA
    Biochemistry; 1996 Dec; 35(50):16055-60. PubMed ID: 8973175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phospholipid flop induced by transmembrane peptides in model membranes is modulated by lipid composition.
    Kol MA; van Laak AN; Rijkers DT; Killian JA; de Kroon AI; de Kruijff B
    Biochemistry; 2003 Jan; 42(1):231-7. PubMed ID: 12515559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flip-flop in adsorbed bilayers.
    Khan A; Ducker WA; Mao M
    J Phys Chem B; 2006 Nov; 110(46):23365-72. PubMed ID: 17107187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of caveolin-1 and cholesterol in transmembrane fatty acid movement.
    Meshulam T; Simard JR; Wharton J; Hamilton JA; Pilch PF
    Biochemistry; 2006 Mar; 45(9):2882-93. PubMed ID: 16503643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flip-flop of phospholipids in vesicles: kinetic analysis with time-resolved small-angle neutron scattering.
    Nakano M; Fukuda M; Kudo T; Matsuzaki N; Azuma T; Sekine K; Endo H; Handa T
    J Phys Chem B; 2009 May; 113(19):6745-8. PubMed ID: 19385639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of 13-HODE and 15-HETE to phospholipid bilayers, albumin, and intracellular fatty acid binding proteins. implications for transmembrane and intracellular transport and for protection from lipid peroxidation.
    Ek-Von Mentzer BA; Zhang F; Hamilton JA
    J Biol Chem; 2001 May; 276(19):15575-80. PubMed ID: 11278949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular simulations of lipid flip-flop in the presence of model transmembrane helices.
    Sapay N; Bennett WF; Tieleman DP
    Biochemistry; 2010 Sep; 49(35):7665-73. PubMed ID: 20666375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.