These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 19778007)
1. Real time monitoring of sickle cell hemoglobin fiber formation by UV resonance Raman spectroscopy. Knee KM; Mukerji I Biochemistry; 2009 Oct; 48(41):9903-11. PubMed ID: 19778007 [TBL] [Abstract][Full Text] [Related]
2. Role of beta87 Thr in the beta6 Val acceptor site during deoxy Hb S polymerization. Reddy LR; Reddy KS; Surrey S; Adachi K Biochemistry; 1997 Dec; 36(50):15992-8. PubMed ID: 9398334 [TBL] [Abstract][Full Text] [Related]
3. Effects of different beta73 amino acids on formation of 14-stranded fibers of Hb S versus double-stranded crystals of Hb C-Harlem. Adachi K; Ding M; Wehrli S; Reddy KS; Surrey S; Horiuchi K Biochemistry; 2003 Apr; 42(15):4476-84. PubMed ID: 12693943 [TBL] [Abstract][Full Text] [Related]
4. Steric and hydrophobic determinants of the solubilities of recombinant sickle cell hemoglobins. Bihoreau MT; Baudin V; Marden M; Lacaze N; Bohn B; Kister J; Schaad O; Dumoulin A; Edelstein SJ; Poyart C Protein Sci; 1992 Jan; 1(1):145-50. PubMed ID: 1363932 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the intermolecular contacts within sickle hemoglobin fibers: effect of site-specific substitutions, fiber pitch, and double-strand disorder. Watowich SJ; Gross LJ; Josephs R J Struct Biol; 1993; 111(3):161-79. PubMed ID: 8003379 [TBL] [Abstract][Full Text] [Related]
6. Hemoglobin site-mutants reveal dynamical role of interhelical H-bonds in the allosteric pathway: time-resolved UV resonance Raman evidence for intra-dimer coupling. Balakrishnan G; Tsai CH; Wu Q; Case MA; Pevsner A; McLendon GL; Ho C; Spiro TG J Mol Biol; 2004 Jul; 340(4):857-68. PubMed ID: 15223326 [TBL] [Abstract][Full Text] [Related]
7. Interspecies hybrid HbS: complete neutralization of Val6(beta)-dependent polymerization of human beta-chain by pig alpha-chains. Rao MJ; Malavalli A; Manjula BN; Kumar R; Prabhakaran M; Sun DP; Ho NT; Ho C; Nagel RL; Acharya AS J Mol Biol; 2000 Jul; 300(5):1389-406. PubMed ID: 10903876 [TBL] [Abstract][Full Text] [Related]
8. Quaternary structure sensitive tyrosine residues in human hemoglobin: UV resonance raman studies of mutants at alpha140, beta35, and beta145 tyrosine. Nagai M; Wajcman H; Lahary A; Nakatsukasa T; Nagatomo S; Kitagawa T Biochemistry; 1999 Jan; 38(4):1243-51. PubMed ID: 9930984 [TBL] [Abstract][Full Text] [Related]
9. A new way to understand quaternary structure changes of hemoglobin upon ligand binding on the basis of UV-resonance Raman evaluation of intersubunit interactions. Nagatomo S; Nagai M; Kitagawa T J Am Chem Soc; 2011 Jul; 133(26):10101-10. PubMed ID: 21615086 [TBL] [Abstract][Full Text] [Related]
10. Role of Leu-beta 88 in the hydrophobic acceptor pocket for Val-beta 6 during hemoglobin S polymerization. Adachi K; Konitzer P; Paulraj CG; Surrey S J Biol Chem; 1994 Jul; 269(26):17477-80. PubMed ID: 8021253 [TBL] [Abstract][Full Text] [Related]
11. Near-UV circular dichroism and UV resonance Raman spectra of individual tryptophan residues in human hemoglobin and their changes upon the quaternary structure transition. Nagai M; Nagatomo S; Nagai Y; Ohkubo K; Imai K; Kitagawa T Biochemistry; 2012 Jul; 51(30):5932-41. PubMed ID: 22769585 [TBL] [Abstract][Full Text] [Related]
12. Quaternary structure sensitive tyrosine interactions in hemoglobin: a UV resonance Raman study of the double mutant rHb (beta99Asp-->Asn, alpha42Tyr-->Asp). Huang S; Peterson ES; Ho C; Friedman JM Biochemistry; 1997 May; 36(20):6197-206. PubMed ID: 9166792 [TBL] [Abstract][Full Text] [Related]
13. The high resolution crystal structure of deoxyhemoglobin S. Harrington DJ; Adachi K; Royer WE J Mol Biol; 1997 Sep; 272(3):398-407. PubMed ID: 9325099 [TBL] [Abstract][Full Text] [Related]
14. Tyrosine and tryptophan structure markers in hemoglobin ultraviolet resonance Raman spectra: mode assignments via subunit-specific isotope labeling of recombinant protein. Hu X; Spiro TG Biochemistry; 1997 Dec; 36(50):15701-12. PubMed ID: 9398299 [TBL] [Abstract][Full Text] [Related]
16. The role of beta93 Cys in the inhibition of Hb S fiber formation. Knee KM; Roden CK; Flory MR; Mukerji I Biophys Chem; 2007 May; 127(3):181-93. PubMed ID: 17350155 [TBL] [Abstract][Full Text] [Related]
17. Aromatic interactions in tryptophan-containing peptides: crystal structures of model tryptophan peptides and phenylalanine analogs. Sengupta A; Mahalakshmi R; Shamala N; Balaram P J Pept Res; 2005 Jan; 65(1):113-29. PubMed ID: 15686542 [TBL] [Abstract][Full Text] [Related]
18. Heme structures of five variants of hemoglobin M probed by resonance Raman spectroscopy. Jin Y; Nagai M; Nagai Y; Nagatomo S; Kitagawa T Biochemistry; 2004 Jul; 43(26):8517-27. PubMed ID: 15222763 [TBL] [Abstract][Full Text] [Related]
19. The Hb A variant (beta73 Asp-->Leu) disrupts Hb S polymerization by a novel mechanism. Adachi K; Ding M; Surrey S; Rotter M; Aprelev A; Zakharov M; Weng W; Ferrone FA J Mol Biol; 2006 Sep; 362(3):528-38. PubMed ID: 16926024 [TBL] [Abstract][Full Text] [Related]
20. Differential ligand recognition by the Src and phosphatidylinositol 3-kinase Src homology 3 domains: circular dichroism and ultraviolet resonance Raman studies. Okishio N; Tanaka T; Fukuda R; Nagai M Biochemistry; 2003 Jan; 42(1):208-16. PubMed ID: 12515556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]