BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 19778023)

  • 1. Electrophile affinity: a reactivity measure for aromatic substitution.
    Koleva G; Galabov B; Wu JI; Schaefer HF; Schleyer Pv
    J Am Chem Soc; 2009 Oct; 131(41):14722-7. PubMed ID: 19778023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophile affinity: quantifying reactivity for the bromination of arenes.
    Galabov B; Koleva G; Schaefer HF; Schleyer Pv
    J Org Chem; 2010 May; 75(9):2813-9. PubMed ID: 20356314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophilic Aromatic Substitution: New Insights into an Old Class of Reactions.
    Galabov B; Nalbantova D; Schleyer Pv; Schaefer HF
    Acc Chem Res; 2016 Jun; 49(6):1191-9. PubMed ID: 27268321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the superelectrophilic dimension through sigma-complexation, SNAr and Diels-Alder reactivity.
    Buncel E; Terrier F
    Org Biomol Chem; 2010 May; 8(10):2285-308. PubMed ID: 20448887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chlorination of 2-phenoxypropanoic acid with NCP in aqueous acetic acid: using a novel ortho-para relationship and the para/meta ratio of substituent effects for mechanism elucidation.
    Segurado MA; Reis JC; de Oliveira JD; Kabilan S; Shanthi M
    J Org Chem; 2007 Jul; 72(14):5327-36. PubMed ID: 17567074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unified mechanistic concept of electrophilic aromatic nitration: convergence of computational results and experimental data.
    Esteves PM; De M Carneiro JW; Cardoso SP; Barbosa AG; Laali KK; Rasul G; Prakash GK; Olah GA
    J Am Chem Soc; 2003 Apr; 125(16):4836-49. PubMed ID: 12696903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying reactivity for electrophilic aromatic substitution reactions with Hirshfeld charge.
    Liu S
    J Phys Chem A; 2015 Mar; 119(12):3107-11. PubMed ID: 25723372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. π-Hydrogen Bonding Probes the Reactivity of Aromatic Compounds: Nitration of Substituted Benzenes.
    Galabov B; Koleva G; Hadjieva B; Schaefer HF
    J Phys Chem A; 2019 Feb; 123(5):1069-1076. PubMed ID: 30624929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a computational model for predicting the site for electrophilic substitution in aromatic systems.
    Liljenberg M; Brinck T; Herschend B; Rein T; Rockwell G; Svensson M
    J Org Chem; 2010 Jul; 75(14):4696-705. PubMed ID: 20552984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substituent effects on the edge-to-face aromatic interactions.
    Lee EC; Hong BH; Lee JY; Kim JC; Kim D; Kim Y; Tarakeshwar P; Kim KS
    J Am Chem Soc; 2005 Mar; 127(12):4530-7. PubMed ID: 15783237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mayr electrophilicity predicts the dual Diels-Alder and sigma-adduct formation behaviour of heteroaromatic super-electrophiles.
    Lakhdar S; Goumont R; Terrier F; Boubaker T; Dust JM; Buncel E
    Org Biomol Chem; 2007 Jun; 5(11):1744-51. PubMed ID: 17520143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient computational approach for the evaluation of substituent constants.
    Galabov B; Ilieva S; Schaefer HF
    J Org Chem; 2006 Aug; 71(17):6382-7. PubMed ID: 16901119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational studies on the reactivity of substituted 1,2-dihydro-1,2-azaborines.
    Silva PJ; Ramos MJ
    J Org Chem; 2009 Aug; 74(16):6120-9. PubMed ID: 19627164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing the σ-complex stability for quantifying reactivity in nucleophilic substitution of aromatic fluorides.
    Liljenberg M; Brinck T; Rein T; Svensson M
    Beilstein J Org Chem; 2013; 9():791-9. PubMed ID: 23766792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of reversibility in azo-coupling reactions between 1,3,5-tris(N,N-dialkylamino)benzenes and arenediazonium salts.
    Boga C; Del Vecchio E; Forlani L; Tozzi S
    J Org Chem; 2007 Nov; 72(23):8741-7. PubMed ID: 17924693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophilic and free radical nitration of benzene and toluene with various nitrating agents.
    Olah GA; Lin HC; Olah JA; Narang SC
    Proc Natl Acad Sci U S A; 1978 Mar; 75(3):1045-9. PubMed ID: 16592503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Study of Chemical Reactivity Using Information-Theoretic Quantities from Density Functional Reactivity Theory for Electrophilic Aromatic Substitution Reactions.
    Wu W; Wu Z; Rong C; Lu T; Huang Y; Liu S
    J Phys Chem A; 2015 Jul; 119(29):8216-24. PubMed ID: 26125512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular similarity based on atomic electrostatic potential.
    Sadlej-Sosnowska N
    J Phys Chem A; 2007 Nov; 111(43):11134-40. PubMed ID: 17918915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic combustion of volatile organic compounds.
    Everaert K; Baeyens J
    J Hazard Mater; 2004 Jun; 109(1-3):113-39. PubMed ID: 15177752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.