BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19778279)

  • 1. Formation of uracil from the ultraviolet photo-irradiation of pyrimidine in pure H2O ices.
    Nuevo M; Milam SN; Sandford SA; Elsila JE; Dworkin JP
    Astrobiology; 2009 Sep; 9(7):683-95. PubMed ID: 19778279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleobases and prebiotic molecules in organic residues produced from the ultraviolet photo-irradiation of pyrimidine in NH(3) and H(2)O+NH(3) ices.
    Nuevo M; Milam SN; Sandford SA
    Astrobiology; 2012 Apr; 12(4):295-314. PubMed ID: 22519971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thymine and other prebiotic molecules produced from the ultraviolet photo-irradiation of pyrimidine in simple astrophysical ice analogs.
    Materese CK; Nuevo M; Bera PP; Lee TJ; Sandford SA
    Astrobiology; 2013 Oct; 13(10):948-62. PubMed ID: 24143868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irradiation of pyrimidine in pure H2O ice with high-energy ultraviolet photons.
    Nuevo M; Chen YJ; Hu WJ; Qiu JM; Wu SR; Fung HS; Chu CC; Yih TS; Ip WH; Wu CY
    Astrobiology; 2014 Feb; 14(2):119-31. PubMed ID: 24512484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism for the abiotic synthesis of uracil via UV-induced oxidation of pyrimidine in pure H(2)O ices under astrophysical conditions.
    Bera PP; Nuevo M; Milam SN; Sandford SA; Lee TJ
    J Chem Phys; 2010 Sep; 133(10):104303. PubMed ID: 20849168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Formation of Nucleobases from the Ultraviolet Photoirradiation of Purine in Simple Astrophysical Ice Analogues.
    Materese CK; Nuevo M; Sandford SA
    Astrobiology; 2017 Aug; 17(8):761-770. PubMed ID: 28723229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiolytic Destruction of Uracil in Interstellar and Solar System Ices.
    Gerakines PA; Qasim D; Frail S; Hudson RL
    Astrobiology; 2022 Mar; 22(3):233-241. PubMed ID: 34672795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urea, glycolic acid, and glycerol in an organic residue produced by ultraviolet irradiation of interstellar/pre-cometary ice analogs.
    Nuevo M; Bredehöft JH; Meierhenrich UJ; d'Hendecourt L; Thiemann WH
    Astrobiology; 2010 Mar; 10(2):245-56. PubMed ID: 20402585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleobase synthesis in interstellar ices.
    Oba Y; Takano Y; Naraoka H; Watanabe N; Kouchi A
    Nat Commun; 2019 Sep; 10(1):4413. PubMed ID: 31562325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthesis and photo-stability of nucleic acids in prebiotic extraterrestrial environments.
    Sandford SA; Bera PP; Lee TJ; Materese CK; Nuevo M
    Top Curr Chem; 2015; 356():123-64. PubMed ID: 24500331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prebiotic Chemistry of Pluto.
    Cruikshank DP; Materese CK; Pendleton YJ; Boston PJ; Grundy WM; Schmitt B; Lisse CM; Runyon KD; Keane JT; Beyer RA; Summers ME; Scipioni F; Stern SA; Dalle Ore CM; Olkin CB; Young LA; Ennico K; Weaver HA; Bray VJ
    Astrobiology; 2019 Jul; 19(7):831-848. PubMed ID: 30907634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An experimental study of the organic molecules produced in cometary and interstellar ice analogs by thermal formaldehyde reactions.
    Schutte WA; Allamandola LJ; Sandford SA
    Icarus; 1993; 104():118-37. PubMed ID: 11540089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic synthesis via irradiation and warming of ice grains in the solar nebula.
    Ciesla FJ; Sandford SA
    Science; 2012 Apr; 336(6080):452-4. PubMed ID: 22461502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex organics in laboratory simulations of interstellar/cometary ices.
    Bernstein MP; Allamandola LJ; Sandford SA
    Adv Space Res; 1997; 19(7):991-8. PubMed ID: 11541346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of prebiotic glycerol in interstellar ices.
    Kaiser RI; Maity S; Jones BM
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):195-200. PubMed ID: 25363714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The determination of ice composition with instruments on cometary landers.
    Boynton WV; D'Uston LC; Young DT; Lunine JI; Waite JH; Bailey SH; Berthelier JJ; Bertaux JL; Borrel V; Burke MF; Cohen BA; McComas DH; Nordholt JE; Evans LG; Trombka JI
    Acta Astronaut; 1997 May; 40(9):663-74. PubMed ID: 11540784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mid- and far-infrared spectroscopic studies of the influence of temperature, ultraviolet photolysis and ion irradiation on cosmic-type ices.
    Moore MH; Hudson RL; Gerakines PA
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Mar; 57(4):843-58. PubMed ID: 11345258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H2 in interstellar and extragalactic ices: infrared characteristics, ultraviolet production, and implications.
    Sandford SA; Allamandola LJ
    Astrophys J; 1993 Jun; 409(2):L65-8. PubMed ID: 11540091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coloration and darkening of methane clathrate and other ices by charged particle irradiation: applications to the outer solar system.
    Thompson WR; Murray BG; Khare BN; Sagan C
    J Geophys Res; 1987 Dec; 92(A13):14933-47. PubMed ID: 11542127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prebiotic significance of extraterrestrial ice photochemistry: detection of hydantoin in organic residues.
    de Marcellus P; Bertrand M; Nuevo M; Westall F; Le Sergeant d'Hendecourt L
    Astrobiology; 2011 Nov; 11(9):847-54. PubMed ID: 22059641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.