BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19778442)

  • 1. Predicting protein-protein binding sites in membrane proteins.
    Bordner AJ
    BMC Bioinformatics; 2009 Sep; 10():312. PubMed ID: 19778442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residue co-evolution helps predict interaction sites in α-helical membrane proteins.
    Zeng B; Hönigschmid P; Frishman D
    J Struct Biol; 2019 May; 206(2):156-169. PubMed ID: 30836197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting the helix-helix interactions from correlated residue mutations.
    Xiong D; Mao W; Gong H
    Proteins; 2017 Dec; 85(12):2162-2169. PubMed ID: 28833538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of helix-helix contacts and interacting helices in polytopic membrane proteins using neural networks.
    Fuchs A; Kirschner A; Frishman D
    Proteins; 2009 Mar; 74(4):857-71. PubMed ID: 18704938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting DNA-binding sites of proteins from amino acid sequence.
    Yan C; Terribilini M; Wu F; Jernigan RL; Dobbs D; Honavar V
    BMC Bioinformatics; 2006 May; 7():262. PubMed ID: 16712732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting small ligand binding sites in proteins using backbone structure.
    Bordner AJ
    Bioinformatics; 2008 Dec; 24(24):2865-71. PubMed ID: 18940825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins.
    Adamian L; Liang J
    J Mol Biol; 2001 Aug; 311(4):891-907. PubMed ID: 11518538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting residue-residue contacts and helix-helix interactions in transmembrane proteins using an integrative feature-based random forest approach.
    Wang XF; Chen Z; Wang C; Yan RX; Zhang Z; Song J
    PLoS One; 2011; 6(10):e26767. PubMed ID: 22046350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate prediction of helix interactions and residue contacts in membrane proteins.
    Hönigschmid P; Frishman D
    J Struct Biol; 2016 Apr; 194(1):112-23. PubMed ID: 26851352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Marker residue types at the structural regions of transmembrane alpha-helical and beta-barrel interfaces.
    Beytur S
    Proteins; 2021 Sep; 89(9):1145-1157. PubMed ID: 33890696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IMPContact: An Interhelical Residue Contact Prediction Method.
    Fang C; Jia Y; Hu L; Lu Y; Wang H
    Biomed Res Int; 2020; 2020():4569037. PubMed ID: 32309431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated prediction of one-dimensional structural features and their relationships with conformational flexibility in helical membrane proteins.
    Ahmad S; Singh YH; Paudel Y; Mori T; Sugita Y; Mizuguchi K
    BMC Bioinformatics; 2010 Oct; 11():533. PubMed ID: 20977780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional cluster analysis identifies interfaces and functional residue clusters in proteins.
    Landgraf R; Xenarios I; Eisenberg D
    J Mol Biol; 2001 Apr; 307(5):1487-502. PubMed ID: 11292355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting structural and topological information to improve prediction of RNA-protein binding sites.
    Maetschke SR; Yuan Z
    BMC Bioinformatics; 2009 Oct; 10():341. PubMed ID: 19835626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. APIS: accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility.
    Xia JF; Zhao XM; Song J; Huang DS
    BMC Bioinformatics; 2010 Apr; 11():174. PubMed ID: 20377884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disordered regions in transmembrane proteins.
    Tusnády GE; Dobson L; Tompa P
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2839-48. PubMed ID: 26275590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences.
    Mizianty MJ; Kurgan L
    BMC Bioinformatics; 2009 Dec; 10():414. PubMed ID: 20003388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting helix-helix interactions from residue contacts in membrane proteins.
    Lo A; Chiu YY; Rødland EA; Lyu PC; Sung TY; Hsu WL
    Bioinformatics; 2009 Apr; 25(8):996-1003. PubMed ID: 19244388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling.
    Engelen S; Trojan LA; Sacquin-Mora S; Lavery R; Carbone A
    PLoS Comput Biol; 2009 Jan; 5(1):e1000267. PubMed ID: 19165315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.