These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19778595)

  • 1. Quantification of tympanic membrane elasticity parameters from in situ point indentation measurements: validation and preliminary study.
    Aernouts J; Soons JA; Dirckx JJ
    Hear Res; 2010 May; 263(1-2):177-82. PubMed ID: 19778595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements.
    Aernouts J; Aerts JR; Dirckx JJ
    Hear Res; 2012 Aug; 290(1-2):45-54. PubMed ID: 22583920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Static versus dynamic gerbil tympanic membrane elasticity: derivation of the complex modulus.
    Aernouts J; Dirckx JJ
    Biomech Model Mechanobiol; 2012 Jul; 11(6):829-40. PubMed ID: 22038402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanics of the tympanic membrane.
    Volandri G; Di Puccio F; Forte P; Carmignani C
    J Biomech; 2011 Apr; 44(7):1219-36. PubMed ID: 21376326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic properties of human tympanic membrane.
    Cheng T; Dai C; Gan RZ
    Ann Biomed Eng; 2007 Feb; 35(2):305-14. PubMed ID: 17160465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elasticity modulus of rabbit middle ear ossicles determined by a novel micro-indentation technique.
    Soons JA; Aernouts J; Dirckx JJ
    Hear Res; 2010 May; 263(1-2):33-7. PubMed ID: 19818840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the quasi-static Young's modulus of the eardrum using an indentation technique.
    Hesabgar SM; Marshall H; Agrawal SK; Samani A; Ladak HM
    Hear Res; 2010 May; 263(1-2):168-76. PubMed ID: 20146934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears.
    Gaihede M; Liao D; Gregersen H
    Phys Med Biol; 2007 Feb; 52(3):803-14. PubMed ID: 17228122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three approaches for estimating the elastic modulus of the tympanic membrane.
    Fay J; Puria S; Decraemer WF; Steele C
    J Biomech; 2005 Sep; 38(9):1807-15. PubMed ID: 16023467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical modeling and design optimization of cartilage myringoplasty using finite element analysis.
    Lee CF; Hsu LP; Chen PR; Chou YF; Chen JH; Liu TC
    Audiol Neurootol; 2006; 11(6):380-8. PubMed ID: 16988502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model.
    Cao L; Youn I; Guilak F; Setton LA
    J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear versus micro-shear bond strength test: a finite element stress analysis.
    Placido E; Meira JB; Lima RG; Muench A; de Souza RM; Ballester RY
    Dent Mater; 2007 Sep; 23(9):1086-92. PubMed ID: 17123595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic properties of gerbil tympanic membrane at very low frequencies.
    Aernouts J; Dirckx JJ
    J Biomech; 2012 Apr; 45(6):919-24. PubMed ID: 22326125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A non-linear viscoelastic model for the tympanic membrane.
    Motallebzadeh H; Charlebois M; Funnell WR
    J Acoust Soc Am; 2013 Dec; 134(6):4427. PubMed ID: 25669254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic characterization of the gerbil pars flaccida from in situ inflation experiments.
    Aernouts J; Dirckx JJ
    Biomech Model Mechanobiol; 2011 Oct; 10(5):727-41. PubMed ID: 21069415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the eardrum as a string with distributed force.
    Goll E; Dalhoff E
    J Acoust Soc Am; 2011 Sep; 130(3):1452-62. PubMed ID: 21895086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biphasic model for micro-indentation of a hydrogel-based contact lens.
    Chen X; Dunn AC; Sawyer WG; Sarntinoranont M
    J Biomech Eng; 2007 Apr; 129(2):156-63. PubMed ID: 17408320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanical properties of Cresco-Ti laser-welded joints and stress analyses using finite element models of fixed distal extension and fixed partial prosthetic designs.
    Uysal H; Kurtoglu C; Gurbuz R; Tutuncu N
    J Prosthet Dent; 2005 Mar; 93(3):235-44. PubMed ID: 15775924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study.
    Julkunen P; Korhonen RK; Herzog W; Jurvelin JS
    Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear.
    Wang X; Cheng T; Gan RZ
    J Acoust Soc Am; 2007 Aug; 122(2):906-17. PubMed ID: 17672640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.