These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 19778643)
1. Controlled electro-implementation of fluoride in titanium implant surfaces enhances cortical bone formation and mineralization. Taxt-Lamolle SF; Rubert M; Haugen HJ; Lyngstadaas SP; Ellingsen JE; Monjo M Acta Biomater; 2010 Mar; 6(3):1025-32. PubMed ID: 19778643 [TBL] [Abstract][Full Text] [Related]
2. In vivo expression of osteogenic markers and bone mineral density at the surface of fluoride-modified titanium implants. Monjo M; Lamolle SF; Lyngstadaas SP; Rønold HJ; Ellingsen JE Biomaterials; 2008 Oct; 29(28):3771-80. PubMed ID: 18585777 [TBL] [Abstract][Full Text] [Related]
3. Improved retention and bone-tolmplant contact with fluoride-modified titanium implants. Ellingsen JE; Johansson CB; Wennerberg A; Holmén A Int J Oral Maxillofac Implants; 2004; 19(5):659-66. PubMed ID: 15508981 [TBL] [Abstract][Full Text] [Related]
4. Effects of a cell adhesion molecule coating on the blasted surface of titanium implants on bone healing in the rabbit femur. Park JW; Lee SG; Choi BJ; Suh JY Int J Oral Maxillofac Implants; 2007; 22(4):533-41. PubMed ID: 17929513 [TBL] [Abstract][Full Text] [Related]
5. Comparison between bioactive fluoride modified and bioinert anodically oxidized implant surfaces in early bone response using rabbit tibia model. Choi JY; Lee HJ; Jang JU; Yeo IS Implant Dent; 2012 Apr; 21(2):124-8. PubMed ID: 22382750 [TBL] [Abstract][Full Text] [Related]
7. Bone healing at implants with a fluoride-modified surface: an experimental study in dogs. Berglundh T; Abrahamsson I; Albouy JP; Lindhe J Clin Oral Implants Res; 2007 Apr; 18(2):147-52. PubMed ID: 17269959 [TBL] [Abstract][Full Text] [Related]
8. Healing response of cortical and cancellous bone around titanium implants. Lee JE; Heo SJ; Koak JY; Kim SK; Han CH; Lee SJ Int J Oral Maxillofac Implants; 2009; 24(4):655-62. PubMed ID: 19885405 [TBL] [Abstract][Full Text] [Related]
9. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Cooper LF; Zhou Y; Takebe J; Guo J; Abron A; Holmén A; Ellingsen JE Biomaterials; 2006 Feb; 27(6):926-36. PubMed ID: 16112191 [TBL] [Abstract][Full Text] [Related]
10. Histomorphometric, ultrastructural and microhardness evaluation of the osseointegration of a nanostructured titanium oxide coating by metal-organic chemical vapour deposition: an in vivo study. Giavaresi G; Ambrosio L; Battiston GA; Casellato U; Gerbasi R; Finia M; Aldini NN; Martini L; Rimondini L; Giardino R Biomaterials; 2004 Nov; 25(25):5583-91. PubMed ID: 15159074 [TBL] [Abstract][Full Text] [Related]
11. In vivo performance of titanium implants functionalized with eicosapentaenoic acid and UV irradiation. Petzold C; Rubert M; Lyngstadaas SP; Ellingsen JE; Monjo M J Biomed Mater Res A; 2011 Jan; 96(1):83-92. PubMed ID: 21105155 [TBL] [Abstract][Full Text] [Related]
12. Chronological changes in the ultrastructure of titanium-bone interfaces: analysis by light microscopy, transmission electron microscopy, and micro-computed tomography. Morinaga K; Kido H; Sato A; Watazu A; Matsuura M Clin Implant Dent Relat Res; 2009 Mar; 11(1):59-68. PubMed ID: 18384402 [TBL] [Abstract][Full Text] [Related]
13. Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance. Lamolle SF; Monjo M; Lyngstadaas SP; Ellingsen JE; Haugen HJ J Biomed Mater Res A; 2009 Mar; 88(3):581-8. PubMed ID: 18306318 [TBL] [Abstract][Full Text] [Related]
14. The effect of hydrofluoric acid treatment on titanium implant osseointegration in ovariectomized rats. Li Y; Zou S; Wang D; Feng G; Bao C; Hu J Biomaterials; 2010 Apr; 31(12):3266-73. PubMed ID: 20132983 [TBL] [Abstract][Full Text] [Related]
15. Cell and matrix reactions at titanium implants in surgically prepared rat tibiae. Masuda T; Salvi GE; Offenbacher S; Felton DA; Cooper LF Int J Oral Maxillofac Implants; 1997; 12(4):472-85. PubMed ID: 9274076 [TBL] [Abstract][Full Text] [Related]
16. Enhanced osteoconductivity of micro-structured titanium implants (XiVE S CELLplus) by addition of surface calcium chemistry: a histomorphometric study in the rabbit femur. Park JW; Kim HK; Kim YJ; An CH; Hanawa T Clin Oral Implants Res; 2009 Jul; 20(7):684-90. PubMed ID: 19489932 [TBL] [Abstract][Full Text] [Related]
17. Increased bone contact to a calcium-incorporated oxidized commercially pure titanium implant: an in-vivo study in rabbits. Fröjd V; Franke-Stenport V; Meirelles L; Wennerberg A Int J Oral Maxillofac Surg; 2008 Jun; 37(6):561-6. PubMed ID: 18346880 [TBL] [Abstract][Full Text] [Related]
18. Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Sul YT; Johansson C; Wennerberg A; Cho LR; Chang BS; Albrektsson T Int J Oral Maxillofac Implants; 2005; 20(3):349-59. PubMed ID: 15973946 [TBL] [Abstract][Full Text] [Related]
19. Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias. Faeda RS; Tavares HS; Sartori R; Guastaldi AC; Marcantonio E J Oral Maxillofac Surg; 2009 Aug; 67(8):1706-15. PubMed ID: 19615586 [TBL] [Abstract][Full Text] [Related]
20. Low-level laser therapy stimulates bone-implant interaction: an experimental study in rabbits. Khadra M; Rønold HJ; Lyngstadaas SP; Ellingsen JE; Haanaes HR Clin Oral Implants Res; 2004 Jun; 15(3):325-32. PubMed ID: 15142095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]