These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 197788)

  • 1. The effect of Li on the glucagon-sensitive adenylate cyclase in vivo in man.
    Ebstein RP; Kara T; Belmaker RH
    Acta Pharmacol Toxicol (Copenh); 1977 Jul; 41(1):80-3. PubMed ID: 197788
    [No Abstract]   [Full Text] [Related]  

  • 2. Lithium inhibition of adrenaline-stimulated adenylate cyclase in humans.
    Ebstein R; Belmaker R; Grunhaus L; Rimon R
    Nature; 1976 Feb; 259(5542):411-3. PubMed ID: 175287
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of lithium on glucagon-stimulated cyclic AMP excretion in rats.
    Olesen OV; Jensen J; Thomsen K
    Acta Pharmacol Toxicol (Copenh); 1974 Nov; 35(5):403-11. PubMed ID: 4372858
    [No Abstract]   [Full Text] [Related]  

  • 4. The effect of haloperidol on epinephrine-stimulated adenylate cyclase in humans.
    Belmaker RH; Ebstein RP; Schoenfeld H; Rimon R
    Psychopharmacology (Berl); 1976 Sep; 49(2):215-7. PubMed ID: 186835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic AMP metabolism and adenylate cyclase concentration in patients with advanced hepatic cirrhosis.
    Francavilla A; Jones AF; Starzl TE
    Gastroenterology; 1978 Dec; 75(6):1026-32. PubMed ID: 213345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hepatic glucose-mobilizing effect of glucagon is not mediated by cyclic AMP most of the time.
    Rodgers RL
    Am J Physiol Endocrinol Metab; 2021 Oct; 321(4):E575-E578. PubMed ID: 34280050
    [No Abstract]   [Full Text] [Related]  

  • 7. The rapid desensitization of glucagon-stimulated adenylate cyclase is a cyclic AMP-independent process that can be mimicked by hormones which stimulate inositol phospholipid metabolism.
    Murphy GJ; Hruby VJ; Trivedi D; Wakelam MJ; Houslay MD
    Biochem J; 1987 Apr; 243(1):39-46. PubMed ID: 3038085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elevation of intracellular cyclic AMP and stimulation of adenylate cyclase activity by vasoactive intestinal peptide and glucagon in the retinal pigment epithelium.
    Koh SW; Chader GJ
    J Neurochem; 1984 Dec; 43(6):1522-6. PubMed ID: 6092540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucagon stimulates adenylate cyclase through GR2 glucagon receptors: a process which can be attenuated by glucagon stimulating inositol phospholipid metabolism through GR1 glucagon receptors.
    Houslay MD; Wakelam MJ; Murphy GJ; Gawler DJ; Pyne NJ
    Biochem Soc Trans; 1987 Feb; 15(1):21-4. PubMed ID: 3030839
    [No Abstract]   [Full Text] [Related]  

  • 10. Lithium inhibition of the adenosine-induced increase of adenylate cyclase activity.
    Ebstein RP; Reches A; Belmaker RH
    J Pharm Pharmacol; 1978 Feb; 30(2):122-3. PubMed ID: 24099
    [No Abstract]   [Full Text] [Related]  

  • 11. In vivo evidence that lithium inactivates Gi modulation of adenylate cyclase in brain.
    Masana MI; Bitran JA; Hsiao JK; Potter WZ
    J Neurochem; 1992 Jul; 59(1):200-5. PubMed ID: 1319465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3,3',5-triiodothyronine administration in vivo modulates the hormone-sensitive adenylate cyclase system of rat hepatocytes.
    Malbon CC; Greenberg ML
    J Clin Invest; 1982 Feb; 69(2):414-26. PubMed ID: 6276441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phorbol ester, TPA inhibits glucagon-stimulated adenylate cyclase activity.
    Heyworth CM; Whetton AD; Kinsella AR; Houslay MD
    FEBS Lett; 1984 May; 170(1):38-42. PubMed ID: 6327375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lithium effects on noradrenergic-linked adenylate cyclase activity in intact rat brain: an in vivo microdialysis study.
    Masana MI; Bitran JA; Hsiao JK; Mefford IN; Potter WZ
    Brain Res; 1991 Jan; 538(2):333-6. PubMed ID: 1849439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of sulfhydryl oxidation in adipocyte plasma membrane surface in the response of adenylate cyclase to isoproterenol and glucagon.
    Mukherjee SP; Mukherjee C
    Biochim Biophys Acta; 1981 Nov; 677(3-4):339-49. PubMed ID: 6271254
    [No Abstract]   [Full Text] [Related]  

  • 16. Influence of lithium on cyclic AMP accumulation in isolated rat fat cells.
    Thams P; Geisler A
    Acta Pharmacol Toxicol (Copenh); 1979 Nov; 45(5):329-35. PubMed ID: 231891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basal and hormone-stimulated adenylate cyclase in liver plasma membranes: measurement by radioimmunoassay of cyclic AMP.
    Rosselin G; Freychet P
    Biochim Biophys Acta; 1973 Apr; 304(2):541-51. PubMed ID: 4351079
    [No Abstract]   [Full Text] [Related]  

  • 18. The adenylate cyclase activity of isolated hepatocytes actions of glucagon and sodium fluoride.
    Crooke MJ; Sneyd JG
    Biochim Biophys Acta; 1980 Aug; 631(1):40-8. PubMed ID: 7397247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence against a requirement for phospholipid methylation in adenylate cyclase activation by hormones. Methyltransferase inhibitors do not impair cyclic AMP accumulation induced by glucagon or beta-adrenergic agents in rat hepatocytes.
    Schanche JS; Ogreid D; Døskeland SO; Refsnes M; Sand TE; Ueland PM; Christoffersen T
    FEBS Lett; 1982 Feb; 138(2):167-72. PubMed ID: 6279442
    [No Abstract]   [Full Text] [Related]  

  • 20. N6-(Phenylisopropyl)adenosine prevents glucagon both blocking insulin's activation of the plasma-membrane cyclic AMP phosphodiesterase and uncoupling hormonal stimulation of adenylate cyclase activity in hepatocytes.
    Wallace AV; Heyworth CM; Houslay MD
    Biochem J; 1984 Aug; 222(1):177-82. PubMed ID: 6089755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.