These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

723 related articles for article (PubMed ID: 19779198)

  • 1. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution.
    Holt LJ; Tuch BB; Villén J; Johnson AD; Gygi SP; Morgan DO
    Science; 2009 Sep; 325(5948):1682-6. PubMed ID: 19779198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of Cdk1 substrate specificity during the cell cycle.
    Kõivomägi M; Valk E; Venta R; Iofik A; Lepiku M; Morgan DO; Loog M
    Mol Cell; 2011 Jun; 42(5):610-23. PubMed ID: 21658602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targets of the cyclin-dependent kinase Cdk1.
    Ubersax JA; Woodbury EL; Quang PN; Paraz M; Blethrow JD; Shah K; Shokat KM; Morgan DO
    Nature; 2003 Oct; 425(6960):859-64. PubMed ID: 14574415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic-Evolution Reveals Narrow Paths to Regulation of the
    Goldstein A; Goldman D; Valk E; Loog M; Holt LJ; Gheber L
    Int J Biol Sci; 2019; 15(6):1125-1138. PubMed ID: 31223274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effects of the phosphatase Cdc14 in meiosis.
    Holt LJ; Hutti JE; Cantley LC; Morgan DO
    Mol Cell; 2007 Mar; 25(5):689-702. PubMed ID: 17349956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates.
    Blethrow JD; Glavy JS; Morgan DO; Shokat KM
    Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1442-7. PubMed ID: 18234856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein kinases display minimal interpositional dependence on substrate sequence: potential implications for the evolution of signalling networks.
    Joughin BA; Liu C; Lauffenburger DA; Hogue CW; Yaffe MB
    Philos Trans R Soc Lond B Biol Sci; 2012 Sep; 367(1602):2574-83. PubMed ID: 22889908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates.
    Loog M; Morgan DO
    Nature; 2005 Mar; 434(7029):104-8. PubMed ID: 15744308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Cdc13 turnover and telomere length homeostasis are controlled by Cdk1-mediated phosphorylation of Cdc13.
    Tseng SF; Shen ZJ; Tsai HJ; Lin YH; Teng SC
    Nucleic Acids Res; 2009 Jun; 37(11):3602-11. PubMed ID: 19359360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multisite phosphorylation networks as signal processors for Cdk1.
    Kõivomägi M; Ord M; Iofik A; Valk E; Venta R; Faustova I; Kivi R; Balog ER; Rubin SM; Loog M
    Nat Struct Mol Biol; 2013 Dec; 20(12):1415-24. PubMed ID: 24186061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of CDP/Cux p110 by cyclin A/Cdk2 and cyclin A/Cdk1.
    Santaguida M; Nepveu A
    J Biol Chem; 2005 Sep; 280(38):32712-21. PubMed ID: 16081423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control.
    Mimura S; Seki T; Tanaka S; Diffley JF
    Nature; 2004 Oct; 431(7012):1118-23. PubMed ID: 15496876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cyclin-dependent kinase Cdk1 directly regulates vacuole inheritance.
    Peng Y; Weisman LS
    Dev Cell; 2008 Sep; 15(3):478-485. PubMed ID: 18804442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct activities of the related protein kinases Cdk1 and Ime2.
    Sawarynski KE; Kaplun A; Tzivion G; Brush GS
    Biochim Biophys Acta; 2007 Mar; 1773(3):450-6. PubMed ID: 17137646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases.
    Hao B; Oehlmann S; Sowa ME; Harper JW; Pavletich NP
    Mol Cell; 2007 Apr; 26(1):131-43. PubMed ID: 17434132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cdk1-dependent regulation of the mitotic inhibitor Wee1.
    Harvey SL; Charlet A; Haas W; Gygi SP; Kellogg DR
    Cell; 2005 Aug; 122(3):407-20. PubMed ID: 16096060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redundant Regulation of Cdk1 Tyrosine Dephosphorylation in Saccharomyces cerevisiae.
    Kennedy EK; Dysart M; Lianga N; Williams EC; Pilon S; Doré C; Deneault JS; Rudner AD
    Genetics; 2016 Mar; 202(3):903-10. PubMed ID: 26715668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of YPL014W (Cip1) as a novel negative regulator of cyclin-dependent kinase in Saccharomyces cerevisiae.
    Ren P; Malik A; Zeng F
    Genes Cells; 2016 Jun; 21(6):543-52. PubMed ID: 27005485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rad53 checkpoint kinase phosphorylation site preference identified in the Swi6 protein of Saccharomyces cerevisiae.
    Sidorova JM; Breeden LL
    Mol Cell Biol; 2003 May; 23(10):3405-16. PubMed ID: 12724400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Clb2 residues required for Swe1 regulation of Clb2-Cdc28 in Saccharomyces cerevisiae.
    Hu F; Gan Y; Aparicio OM
    Genetics; 2008 Jun; 179(2):863-74. PubMed ID: 18558651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.