BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19779218)

  • 1. Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator.
    Brenner DJ; Elliston CD; Hall EJ; Paganetti H
    Phys Med Biol; 2009 Oct; 54(20):6065-78. PubMed ID: 19779218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shielding design for a laser-accelerated proton therapy system.
    Fan J; Luo W; Fourkal E; Lin T; Li J; Veltchev I; Ma CM
    Phys Med Biol; 2007 Jul; 52(13):3913-30. PubMed ID: 17664585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
    Titt U; Zheng Y; Vassiliev ON; Newhauser WD
    Phys Med Biol; 2008 Jan; 53(2):487-504. PubMed ID: 18185001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Monte Carlo study of neutron contamination in presence of circular cones during stereotactic radiotherapy with 18 MV photon beams.
    Tajiki S; Nedaie HA; Rahmani F
    Biomed Phys Eng Express; 2020 Apr; 6(3):035016. PubMed ID: 33438661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ASSESSMENT OF AMBIENT NEUTRON DOSE EQUIVALENT IN SPATIALLY FRACTIONATED RADIOTHERAPY WITH PROTONS USING PHYSICAL COLLIMATORS.
    Charyyev S; Wang CC
    Radiat Prot Dosimetry; 2020 Jul; 189(2):190-197. PubMed ID: 32144416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: identification of the main source and reduction in the secondary neutron dose.
    Yonai S; Matsufuji N; Kanai T
    Med Phys; 2009 Oct; 36(10):4830-9. PubMed ID: 19928113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of beam efficiency through the patient-specific collimator on secondary neutron dose equivalent in double scattering and uniform scanning modes of proton therapy.
    Hecksel D; Anferov V; Fitzek M; Shahnazi K
    Med Phys; 2010 Jun; 37(6):2910-7. PubMed ID: 20632602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.
    Pérez-Andújar A; Newhauser WD; Deluca PM
    Phys Med Biol; 2009 Feb; 54(4):993-1008. PubMed ID: 19147903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions.
    Svensson R; Larsson S; Gudowska I; Holmberg R; Brahme A
    Med Phys; 2007 Mar; 34(3):877-88. PubMed ID: 17441233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculations of neutron dose equivalent exposures from range-modulated proton therapy beams.
    Polf JC; Newhauser WD
    Phys Med Biol; 2005 Aug; 50(16):3859-73. PubMed ID: 16077232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial beam size study for passive scatter proton therapy. I. Monte Carlo verification.
    Polf JC; Harvey MC; Titt U; Newhauser WD; Smith AR
    Med Phys; 2007 Nov; 34(11):4213-8. PubMed ID: 18072485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system.
    Diffenderfer ES; Ainsley CG; Kirk ML; McDonough JE; Maughan RL
    Med Phys; 2011 Nov; 38(11):6248-56. PubMed ID: 22047390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.
    Heo S; Yoo S; Song Y; Kim E; Shin J; Han S; Jung W; Nam S; Lee R; Lee K; Cho S
    Radiat Prot Dosimetry; 2017 Jul; 175(3):297-303. PubMed ID: 27885084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetry of clinical neutron and proton beams: an overview of recommendations.
    Vynckier S; ;
    Radiat Prot Dosimetry; 2004; 110(1-4):565-72. PubMed ID: 15353710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary neutrons in clinical proton radiotherapy: a charged issue.
    Brenner DJ; Hall EJ
    Radiother Oncol; 2008 Feb; 86(2):165-70. PubMed ID: 18192046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the mechanical collimation for minibeam generation in proton minibeam radiation therapy.
    Guardiola C; Peucelle C; Prezado Y
    Med Phys; 2017 Apr; 44(4):1470-1478. PubMed ID: 28129665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pitfalls of tungsten multileaf collimator in proton beam therapy.
    Moskvin V; Cheng CW; Das IJ
    Med Phys; 2011 Dec; 38(12):6395-406. PubMed ID: 22149823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing stray radiation dose to patients receiving passively scattered proton radiotherapy for prostate cancer.
    Taddei PJ; Fontenot JD; Zheng Y; Mirkovic D; Lee AK; Titt U; Newhauser WD
    Phys Med Biol; 2008 Apr; 53(8):2131-47. PubMed ID: 18369278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of different dose scoring methods on organ-specific neutron dose calculations in proton therapy.
    Jarlskog CZ; Paganetti H
    Phys Med Biol; 2008 Sep; 53(17):4523-32. PubMed ID: 18677040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OPTIMIZATION OF AN ADDITIONAL COLLIMATOR IN A BEAM DELIVERY SYSTEM FOR REDUCTION OF THE SECONDARY NEUTRON EXPOSURE IN PASSIVE CARBON-ION THERAPY.
    Komori M; Takeuchi A; Niwa M; Harada T; Oguchi H
    Radiat Prot Dosimetry; 2019 Jul; 184(1):28-35. PubMed ID: 30339247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.