These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 19779218)

  • 1. Reduction of the secondary neutron dose in passively scattered proton radiotherapy, using an optimized pre-collimator/collimator.
    Brenner DJ; Elliston CD; Hall EJ; Paganetti H
    Phys Med Biol; 2009 Oct; 54(20):6065-78. PubMed ID: 19779218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shielding design for a laser-accelerated proton therapy system.
    Fan J; Luo W; Fourkal E; Lin T; Li J; Veltchev I; Ma CM
    Phys Med Biol; 2007 Jul; 52(13):3913-30. PubMed ID: 17664585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
    Titt U; Zheng Y; Vassiliev ON; Newhauser WD
    Phys Med Biol; 2008 Jan; 53(2):487-504. PubMed ID: 18185001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Monte Carlo study of neutron contamination in presence of circular cones during stereotactic radiotherapy with 18 MV photon beams.
    Tajiki S; Nedaie HA; Rahmani F
    Biomed Phys Eng Express; 2020 Apr; 6(3):035016. PubMed ID: 33438661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ASSESSMENT OF AMBIENT NEUTRON DOSE EQUIVALENT IN SPATIALLY FRACTIONATED RADIOTHERAPY WITH PROTONS USING PHYSICAL COLLIMATORS.
    Charyyev S; Wang CC
    Radiat Prot Dosimetry; 2020 Jul; 189(2):190-197. PubMed ID: 32144416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo study on secondary neutrons in passive carbon-ion radiotherapy: identification of the main source and reduction in the secondary neutron dose.
    Yonai S; Matsufuji N; Kanai T
    Med Phys; 2009 Oct; 36(10):4830-9. PubMed ID: 19928113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of beam efficiency through the patient-specific collimator on secondary neutron dose equivalent in double scattering and uniform scanning modes of proton therapy.
    Hecksel D; Anferov V; Fitzek M; Shahnazi K
    Med Phys; 2010 Jun; 37(6):2910-7. PubMed ID: 20632602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.
    Pérez-Andújar A; Newhauser WD; Deluca PM
    Phys Med Biol; 2009 Feb; 54(4):993-1008. PubMed ID: 19147903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions.
    Svensson R; Larsson S; Gudowska I; Holmberg R; Brahme A
    Med Phys; 2007 Mar; 34(3):877-88. PubMed ID: 17441233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculations of neutron dose equivalent exposures from range-modulated proton therapy beams.
    Polf JC; Newhauser WD
    Phys Med Biol; 2005 Aug; 50(16):3859-73. PubMed ID: 16077232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Initial beam size study for passive scatter proton therapy. I. Monte Carlo verification.
    Polf JC; Harvey MC; Titt U; Newhauser WD; Smith AR
    Med Phys; 2007 Nov; 34(11):4213-8. PubMed ID: 18072485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system.
    Diffenderfer ES; Ainsley CG; Kirk ML; McDonough JE; Maughan RL
    Med Phys; 2011 Nov; 38(11):6248-56. PubMed ID: 22047390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.
    Heo S; Yoo S; Song Y; Kim E; Shin J; Han S; Jung W; Nam S; Lee R; Lee K; Cho S
    Radiat Prot Dosimetry; 2017 Jul; 175(3):297-303. PubMed ID: 27885084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetry of clinical neutron and proton beams: an overview of recommendations.
    Vynckier S; ;
    Radiat Prot Dosimetry; 2004; 110(1-4):565-72. PubMed ID: 15353710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary neutrons in clinical proton radiotherapy: a charged issue.
    Brenner DJ; Hall EJ
    Radiother Oncol; 2008 Feb; 86(2):165-70. PubMed ID: 18192046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of the mechanical collimation for minibeam generation in proton minibeam radiation therapy.
    Guardiola C; Peucelle C; Prezado Y
    Med Phys; 2017 Apr; 44(4):1470-1478. PubMed ID: 28129665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pitfalls of tungsten multileaf collimator in proton beam therapy.
    Moskvin V; Cheng CW; Das IJ
    Med Phys; 2011 Dec; 38(12):6395-406. PubMed ID: 22149823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing stray radiation dose to patients receiving passively scattered proton radiotherapy for prostate cancer.
    Taddei PJ; Fontenot JD; Zheng Y; Mirkovic D; Lee AK; Titt U; Newhauser WD
    Phys Med Biol; 2008 Apr; 53(8):2131-47. PubMed ID: 18369278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of different dose scoring methods on organ-specific neutron dose calculations in proton therapy.
    Jarlskog CZ; Paganetti H
    Phys Med Biol; 2008 Sep; 53(17):4523-32. PubMed ID: 18677040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OPTIMIZATION OF AN ADDITIONAL COLLIMATOR IN A BEAM DELIVERY SYSTEM FOR REDUCTION OF THE SECONDARY NEUTRON EXPOSURE IN PASSIVE CARBON-ION THERAPY.
    Komori M; Takeuchi A; Niwa M; Harada T; Oguchi H
    Radiat Prot Dosimetry; 2019 Jul; 184(1):28-35. PubMed ID: 30339247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.