BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19779389)

  • 1. Middle ear mechanics of cartilage tympanoplasty evaluated by laser holography and vibrometry.
    Aarnisalo AA; Cheng JT; Ravicz ME; Hulli N; Harrington EJ; Hernandez-Montes MS; Furlong C; Merchant SN; Rosowski JJ
    Otol Neurotol; 2009 Dec; 30(8):1209-14. PubMed ID: 19779389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion of the tympanic membrane after cartilage tympanoplasty determined by stroboscopic holography.
    Aarnisalo AA; Cheng JT; Ravicz ME; Furlong C; Merchant SN; Rosowski JJ
    Hear Res; 2010 May; 263(1-2):78-84. PubMed ID: 19909803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts.
    Kozin ED; Black NL; Cheng JT; Cotler MJ; McKenna MJ; Lee DJ; Lewis JA; Rosowski JJ; Remenschneider AK
    Hear Res; 2016 Oct; 340():191-203. PubMed ID: 26994661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the mechanics of Type III stapes columella tympanoplasty using laser-Doppler vibrometry.
    Chien W; Rosowski JJ; Merchant SN
    Otol Neurotol; 2007 Sep; 28(6):782-7. PubMed ID: 17948356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Middle-ear mechanics of Type III tympanoplasty (stapes columella): I. Experimental studies.
    Mehta RP; Ravicz ME; Rosowski JJ; Merchant SN
    Otol Neurotol; 2003 Mar; 24(2):176-85. PubMed ID: 12621329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of subtotal tympanic membrane perforations: A temporal bone study of several tympanoplasty materials.
    Eldaebes MMAS; Landry TG; Bance ML
    PLoS One; 2019; 14(9):e0222728. PubMed ID: 31536572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Cartilage Overlay on the Tympanic Membrane: Lessons From a Temporal Bone Study for Cartilage Tympanoplasty.
    Eldaebes MMAS; Landry TG; Bance ML
    Otol Neurotol; 2018 Sep; 39(8):995-1004. PubMed ID: 29957671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Middle ear mechanics of Type III tympanoplasty (stapes columella): II. Clinical studies.
    Merchant SN; McKenna MJ; Mehta RP; Ravicz ME; Rosowski JJ
    Otol Neurotol; 2003 Mar; 24(2):186-94. PubMed ID: 12621330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results.
    Razavi P; Ravicz ME; Dobrev I; Cheng JT; Furlong C; Rosowski JJ
    Hear Res; 2016 Oct; 340():15-24. PubMed ID: 26880098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanics of type IV tympanoplasty: experimental findings and surgical implications.
    Merchant SN; Ravicz ME; Rosowski JJ
    Ann Otol Rhinol Laryngol; 1997 Jan; 106(1):49-60. PubMed ID: 9006362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone conduction in Thiel-embalmed cadaver heads.
    Guignard J; Stieger C; Kompis M; Caversaccio M; Arnold A
    Hear Res; 2013 Dec; 306():115-22. PubMed ID: 24161399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cartilaginous bending spring tympanoplasty: a temporal bone study and first clinical results.
    Rupp R; Schelhorn T; Kniesburges S; Balk M; Allner M; Mantsopoulos K; Iro H; Hornung J; Gostian AO
    Eur Arch Otorhinolaryngol; 2022 Nov; 279(11):5145-5151. PubMed ID: 35364720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparisons of the mechanics of partial and total ossicular replacement prostheses with cartilage in a cadaveric temporal bone preparation.
    Ulku CH; Cheng JT; Guignard J; Rosowski JJ
    Acta Otolaryngol; 2014 Aug; 134(8):776-84. PubMed ID: 24847945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser Doppler vibrometric assessment of middle ear motion in Thiel-embalmed heads.
    Stieger C; Candreia C; Kompis M; Herrmann G; Pfiffner F; Widmer D; Arnold A
    Otol Neurotol; 2012 Apr; 33(3):311-8. PubMed ID: 22377645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human middle ear transfer function measured by double laser interferometry system.
    Gan RZ; Wood MW; Dormer KJ
    Otol Neurotol; 2004 Jul; 25(4):423-35. PubMed ID: 15241216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human middle-ear muscle pulls change tympanic-membrane shape and low-frequency middle-ear transmission magnitudes and delays.
    Cho NH; Ravicz ME; Puria S
    Hear Res; 2023 Mar; 430():108721. PubMed ID: 36821982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Method of ossicular chain valuation. Experimental measurement and clinical application].
    Sokołowski J; Niemczyk K; Bartoszewicz R; Morawski K; Bruzgielewicz A
    Otolaryngol Pol; 2009; 63(5):432-6. PubMed ID: 20169909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First results of a novel adjustable-length ossicular reconstruction prosthesis in temporal bones.
    Gottlieb PK; Li X; Monfared A; Blevins N; Puria S
    Laryngoscope; 2016 Nov; 126(11):2559-2564. PubMed ID: 26972795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Silastic sheeting over the round window niche on sound transmission in the intact human middle ear.
    Alian WA; Majdalawieh OF; Van Wijhe RG; Ejnell H; Bance M
    J Otolaryngol Head Neck Surg; 2012 Feb; 41(1):1-7. PubMed ID: 22498261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of the effect of middle ear in bone conduction.
    Dobrev I; Farahmandi TS; Röösli C
    Hear Res; 2020 Sep; 395():108041. PubMed ID: 32810722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.