BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

744 related articles for article (PubMed ID: 19780076)

  • 1. Ultrahigh-throughput FACS-based screening for directed enzyme evolution.
    Yang G; Withers SG
    Chembiochem; 2009 Nov; 10(17):2704-15. PubMed ID: 19780076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput FACS method for directed evolution of substrate specificity.
    Olsen MJ; Gam J; Iverson BL; Georgiou G
    Methods Mol Biol; 2003; 230():329-42. PubMed ID: 12824593
    [No Abstract]   [Full Text] [Related]  

  • 3. Advances in laboratory evolution of enzymes.
    Bershtein S; Tawfik DS
    Curr Opin Chem Biol; 2008 Apr; 12(2):151-8. PubMed ID: 18284924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments.
    Aharoni A; Amitai G; Bernath K; Magdassi S; Tawfik DS
    Chem Biol; 2005 Dec; 12(12):1281-9. PubMed ID: 16356845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput screening of enzyme libraries: in vitro evolution of a beta-galactosidase by fluorescence-activated sorting of double emulsions.
    Mastrobattista E; Taly V; Chanudet E; Treacy P; Kelly BT; Griffiths AD
    Chem Biol; 2005 Dec; 12(12):1291-300. PubMed ID: 16356846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution of a thermophilic beta-glucosidase for cellulosic bioethanol production.
    Hardiman E; Gibbs M; Reeves R; Bergquist P
    Appl Biochem Biotechnol; 2010 May; 161(1-8):301-12. PubMed ID: 19834652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts.
    Becker S; Schmoldt HU; Adams TM; Wilhelm S; Kolmar H
    Curr Opin Biotechnol; 2004 Aug; 15(4):323-9. PubMed ID: 15296929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence activated cell sorting as a general ultra-high-throughput screening method for directed evolution of glycosyltransferases.
    Yang G; Rich JR; Gilbert M; Wakarchuk WW; Feng Y; Withers SG
    J Am Chem Soc; 2010 Aug; 132(30):10570-7. PubMed ID: 20662530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution of enzymes for applied biocatalysis.
    Turner NJ
    Trends Biotechnol; 2003 Nov; 21(11):474-8. PubMed ID: 14573359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a high-throughput screening platform for directed evolution of enzymes that activate genotoxic prodrugs.
    Copp JN; Williams EM; Rich MH; Patterson AV; Smaill JB; Ackerley DF
    Protein Eng Des Sel; 2014 Oct; 27(10):399-403. PubMed ID: 24996412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of enzyme stability.
    Eijsink VG; GĂ„seidnes S; Borchert TV; van den Burg B
    Biomol Eng; 2005 Jun; 22(1-3):21-30. PubMed ID: 15857780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phage display as a tool for the directed evolution of enzymes.
    Fernandez-Gacio A; Uguen M; Fastrez J
    Trends Biotechnol; 2003 Sep; 21(9):408-14. PubMed ID: 12948674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate-induced gene expression screening: a method for high-throughput screening of metagenome libraries.
    Uchiyama T; Miyazaki K
    Methods Mol Biol; 2010; 668():153-68. PubMed ID: 20830562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A practical teaching course in directed protein evolution using the green fluorescent protein as a model.
    Ruller R; Silva-Rocha R; Silva A; Cruz Schneider MP; Ward RJ
    Biochem Mol Biol Educ; 2011; 39(1):21-7. PubMed ID: 21433249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A flow cytometry-based screening system for directed evolution of proteases.
    Tu R; Martinez R; Prodanovic R; Klein M; Schwaneberg U
    J Biomol Screen; 2011 Mar; 16(3):285-94. PubMed ID: 21335599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput screening methodology for the directed evolution of glycosyltransferases.
    Aharoni A; Thieme K; Chiu CP; Buchini S; Lairson LL; Chen H; Strynadka NC; Wakarchuk WW; Withers SG
    Nat Methods; 2006 Aug; 3(8):609-14. PubMed ID: 16862135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed evolution of the substrate specificities of a site-specific recombinase and an aminoacyl-tRNA synthetase using fluorescence-activated cell sorting (FACS).
    Santoro SW; Schultz PG
    Methods Mol Biol; 2003; 230():291-312. PubMed ID: 12824591
    [No Abstract]   [Full Text] [Related]  

  • 18. [Design and application of high-throughput screening tools: a review].
    Tang S; Liang C; Jiang P
    Sheng Wu Gong Cheng Xue Bao; 2012 Jul; 28(7):781-8. PubMed ID: 23167190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speeding up enzyme discovery and engineering with ultrahigh-throughput methods.
    Bunzel HA; Garrabou X; Pott M; Hilvert D
    Curr Opin Struct Biol; 2018 Feb; 48():149-156. PubMed ID: 29413955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity.
    Santoro SW; Wang L; Herberich B; King DS; Schultz PG
    Nat Biotechnol; 2002 Oct; 20(10):1044-8. PubMed ID: 12244330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.