These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19780121)

  • 1. Low-molecular-weight analogues of the soluble methane monooxygenase (sMMO): from the structural mimicking of resting states and intermediates to functional models.
    Siewert I; Limberg C
    Chemistry; 2009 Oct; 15(40):10316-28. PubMed ID: 19780121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A diiron center stabilized by a bis-TPA ligand as a model of soluble methane monooxygenase: predominant alkene epoxidation with H2O2.
    Kodera M; Itoh M; Kano K; Funabiki T; Reglier M
    Angew Chem Int Ed Engl; 2005 Nov; 44(43):7104-6. PubMed ID: 16217818
    [No Abstract]   [Full Text] [Related]  

  • 3. DFT study of the mechanism for methane hydroxylation by soluble methane monooxygenase (sMMO): effects of oxidation state, spin state, and coordination number.
    Huang SP; Shiota Y; Yoshizawa K
    Dalton Trans; 2013 Jan; 42(4):1011-23. PubMed ID: 23108153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A non-radical mechanism for methane hydroxylation at the diiron active site of soluble methane monooxygenase.
    Yoshizawa K; Yumura T
    Chemistry; 2003 May; 9(10):2347-58. PubMed ID: 12772310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxylation of methane through component interactions in soluble methane monooxygenases.
    Lee SJ
    J Microbiol; 2016 Apr; 54(4):277-82. PubMed ID: 27033202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase.
    Torrent M; Musaev DG; Basch H; Morokuma K
    J Comput Chem; 2002 Jan; 23(1):59-76. PubMed ID: 11913390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, electronic configuration, and Mössbauer spectral parameters of an antiferromagnetic Fe2-peroxo intermediate of methane monooxygenase.
    Chachiyo T; Rodriguez JH
    Dalton Trans; 2012 Jan; 41(3):995-1003. PubMed ID: 22101614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase.
    Balasubramanian R; Rosenzweig AC
    Acc Chem Res; 2007 Jul; 40(7):573-80. PubMed ID: 17444606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination by X-ray absorption spectroscopy of the Fe-Fe separation in the oxidized form of the hydroxylase of methane monooxygenase alone and in the presence of MMOD.
    Rudd DJ; Sazinsky MH; Merkx M; Lippard SJ; Hedman B; Hodgson KO
    Inorg Chem; 2004 Jul; 43(15):4579-89. PubMed ID: 15257585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role for threonine 201 in the catalytic cycle of the soluble diiron hydroxylase toluene 4-monooxygenase.
    Elsen NL; Bailey LJ; Hauser AD; Fox BG
    Biochemistry; 2009 May; 48(18):3838-46. PubMed ID: 19290655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key amino acid residues in the regulation of soluble methane monooxygenase catalysis by component B.
    Brazeau BJ; Lipscomb JD
    Biochemistry; 2003 May; 42(19):5618-31. PubMed ID: 12741818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane.
    Lieberman RL; Rosenzweig AC
    Nature; 2005 Mar; 434(7030):177-82. PubMed ID: 15674245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic and catalytic studies of the peroxide-shunt reaction in a diiron hydroxylase.
    Bailey LJ; Fox BG
    Biochemistry; 2009 Sep; 48(38):8932-9. PubMed ID: 19705873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase.
    Yoshizawa K
    J Inorg Biochem; 2000 Jan; 78(1):23-34. PubMed ID: 10714702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and structural analysis of an active particulate methane monooxygenase trimer from Methylococcus capsulatus (Bath).
    Kitmitto A; Myronova N; Basu P; Dalton H
    Biochemistry; 2005 Aug; 44(33):10954-65. PubMed ID: 16101279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tale of two methane monooxygenases.
    Ross MO; Rosenzweig AC
    J Biol Inorg Chem; 2017 Apr; 22(2-3):307-319. PubMed ID: 27878395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase.
    Lieberman RL; Rosenzweig AC
    Crit Rev Biochem Mol Biol; 2004; 39(3):147-64. PubMed ID: 15596549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regioselective arene hydroxylation mediated by a (mu-peroxo)diiron(III) complex: a functional model for toluene monooxygenase.
    Yamashita M; Furutachi H; Tosha T; Fujinami S; Saito W; Maeda Y; Takahashi K; Tanaka K; Kitagawa T; Suzuki M
    J Am Chem Soc; 2007 Jan; 129(1):2-3. PubMed ID: 17199259
    [No Abstract]   [Full Text] [Related]  

  • 19. X-ray absorption spectroscopic study of the reduced hydroxylases of methane monooxygenase and toluene/o-xylene monooxygenase: differences in active site structure and effects of the coupling proteins MMOB and ToMOD.
    Rudd DJ; Sazinsky MH; Lippard SJ; Hedman B; Hodgson KO
    Inorg Chem; 2005 Jun; 44(13):4546-54. PubMed ID: 15962961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical studies for large tunneling and the hydrogen-transfer mechanism in the C-H activation of CH3CN by a di(μ-oxo)diiron(IV) complex: a model for intermediate Q in soluble methane monooxygenase.
    Khanh Mai B; Kim Y
    Chemistry; 2013 Mar; 19(11):3568-72. PubMed ID: 23400929
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.