BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19780146)

  • 1. Magnetic resonance elastography: Inversions in bounded media.
    Kolipaka A; McGee KP; Manduca A; Romano AJ; Glaser KJ; Araoz PA; Ehman RL
    Magn Reson Med; 2009 Dec; 62(6):1533-42. PubMed ID: 19780146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative 3D magnetic resonance elastography: Comparison with dynamic mechanical analysis.
    Arunachalam SP; Rossman PJ; Arani A; Lake DS; Glaser KJ; Trzasko JD; Manduca A; McGee KP; Ehman RL; Araoz PA
    Magn Reson Med; 2017 Mar; 77(3):1184-1192. PubMed ID: 27016276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-source and multi-directional shear wave generation with intersecting steered ultrasound push beams.
    Nabavizadeh A; Song P; Chen S; Greenleaf JF; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):647-62. PubMed ID: 25881343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ability of magnetic resonance elastography to assess taut bands.
    Chen Q; Basford J; An KN
    Clin Biomech (Bristol, Avon); 2008 Jun; 23(5):623-9. PubMed ID: 18206282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic resonance elastography of the brain: A study of feasibility and reproducibility using an ergonomic pillow-like passive driver.
    Huang X; Chafi H; Matthews KL; Carmichael O; Li T; Miao Q; Wang S; Jia G
    Magn Reson Imaging; 2019 Jun; 59():68-76. PubMed ID: 30858002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of time reduction methods for magnetic resonance elastography of the brain.
    Murphy MC; Glaser KJ; Manduca A; Felmlee JP; Huston J; Ehman RL
    Magn Reson Imaging; 2010 Dec; 28(10):1514-24. PubMed ID: 20817440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for characterization of tissue elastic properties combining ultrasonic computed tomography with elastography.
    Glozman T; Azhari H
    J Ultrasound Med; 2010 Mar; 29(3):387-98. PubMed ID: 20194935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational elastography from standard ultrasound image sequences by global trust region optimization.
    Kybic J; Smutek D
    Inf Process Med Imaging; 2005; 19():299-310. PubMed ID: 17354704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of a rapid, multiphase MRE sequence in a heart-simulating phantom.
    Kolipaka A; McGee KP; Araoz PA; Glaser KJ; Manduca A; Ehman RL
    Magn Reson Med; 2009 Sep; 62(3):691-8. PubMed ID: 19572388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MR elastography as a method for the assessment of myocardial stiffness: comparison with an established pressure-volume model in a left ventricular model of the heart.
    Kolipaka A; McGee KP; Araoz PA; Glaser KJ; Manduca A; Romano AJ; Ehman RL
    Magn Reson Med; 2009 Jul; 62(1):135-40. PubMed ID: 19353657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-frequency mode conversion technique for stiff lesion detection with magnetic resonance elastography (MRE).
    Mariappan YK; Glaser KJ; Manduca A; Romano AJ; Venkatesh SK; Yin M; Ehman RL
    Magn Reson Med; 2009 Dec; 62(6):1457-65. PubMed ID: 19859936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic property measurement in thin tissue constructs using ultrasound.
    Liu D; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):368-83. PubMed ID: 18334343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of measurement depth on the stiffness assessment of healthy liver with real-time shear wave elastography.
    Wang CZ; Zheng J; Huang ZP; Xiao Y; Song D; Zeng J; Zheng HR; Zheng RQ
    Ultrasound Med Biol; 2014 Mar; 40(3):461-9. PubMed ID: 24361224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of off-frequency sampling in magnetic resonance elastography.
    Johnson CL; Chen DD; Olivero WC; Sutton BP; Georgiadis JG
    Magn Reson Imaging; 2012 Feb; 30(2):205-12. PubMed ID: 22055750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric-based brain Magnetic Resonance Elastography using a Rayleigh damping material model.
    Petrov AY; Sellier M; Docherty PD; Chase JG
    Comput Methods Programs Biomed; 2014 Oct; 116(3):328-39. PubMed ID: 24986109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MR elastography of the human heart: noninvasive assessment of myocardial elasticity changes by shear wave amplitude variations.
    Sack I; Rump J; Elgeti T; Samani A; Braun J
    Magn Reson Med; 2009 Mar; 61(3):668-77. PubMed ID: 19097236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance elastography as a method for the assessment of effective myocardial stiffness throughout the cardiac cycle.
    Kolipaka A; Araoz PA; McGee KP; Manduca A; Ehman RL
    Magn Reson Med; 2010 Sep; 64(3):862-70. PubMed ID: 20578052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of robust wave image processing methods for magnetic resonance elastography.
    Li BN; Shan X; Xiang K; An N; Xu J; Huang W; Kobayashi E
    Comput Biol Med; 2014 Nov; 54():100-8. PubMed ID: 25222934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstructing 3-D maps of the local viscoelastic properties using a finite-amplitude modulated radiation force.
    Giannoula A; Cobbold R; Bezerianos A
    Ultrasonics; 2014 Feb; 54(2):563-75. PubMed ID: 24011778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method for shear wave speed estimation in shear wave elastography.
    Engel AJ; Bashford GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2106-14. PubMed ID: 26670851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.