BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19780579)

  • 1. Improved surface-patterned platinum microelectrodes for the study of exocytotic events.
    Berberian K; Kisler K; Fang Q; Lindau M
    Anal Chem; 2009 Nov; 81(21):8734-40. PubMed ID: 19780579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microelectrode Arrays of Diamond-Insulated Graphitic Channels for Real-Time Detection of Exocytotic Events from Cultured Chromaffin Cells and Slices of Adrenal Glands.
    Picollo F; Battiato A; Bernardi E; Marcantoni A; Pasquarelli A; Carbone E; Olivero P; Carabelli V
    Anal Chem; 2016 Aug; 88(15):7493-9. PubMed ID: 27376596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells.
    Gao Y; Chen X; Gupta S; Gillis KD; Gangopadhyay S
    Biomed Microdevices; 2008 Oct; 10(5):623-9. PubMed ID: 18493856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes.
    Sun X; Gillis KD
    Anal Chem; 2006 Apr; 78(8):2521-5. PubMed ID: 16615759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical imaging of fusion pore openings by electrochemical detector arrays.
    Hafez I; Kisler K; Berberian K; Dernick G; Valero V; Yong MG; Craighead HG; Lindau M
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13879-84. PubMed ID: 16172395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical measurement of quantal exocytosis using microchips.
    Gillis KD; Liu XA; Marcantoni A; Carabelli V
    Pflugers Arch; 2018 Jan; 470(1):97-112. PubMed ID: 28866728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithographic Microfabrication of a 16-Electrode Array on a Probe Tip for High Spatial Resolution Electrochemical Localization of Exocytosis.
    Wigström J; Dunevall J; Najafinobar N; Lovrić J; Wang J; Ewing AG; Cans AS
    Anal Chem; 2016 Feb; 88(4):2080-7. PubMed ID: 26771211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwell device for targeting single cells to electrochemical microelectrodes for high-throughput amperometric detection of quantal exocytosis.
    Liu X; Barizuddin S; Shin W; Mathai CJ; Gangopadhyay S; Gillis KD
    Anal Chem; 2011 Apr; 83(7):2445-51. PubMed ID: 21355543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Disk and Nanotip Electrodes for Measurement of Single-Cell Amperometry during Exocytotic Release.
    Gu C; Zhang X; Ewing AG
    Anal Chem; 2020 Aug; 92(15):10268-10273. PubMed ID: 32628468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of local pH variations during amperometric monitoring of vesicular exocytotic events at chromaffin cells.
    Amatore C; Arbault S; Bouret Y; Guille M; Lemaître F
    Chemphyschem; 2010 Sep; 11(13):2931-41. PubMed ID: 20391459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invariance of exocytotic events detected by amperometry as a function of the carbon fiber microelectrode diameter.
    Amatore C; Arbault S; Bouret Y; Guille M; Lemaître F; Verchier Y
    Anal Chem; 2009 Apr; 81(8):3087-93. PubMed ID: 19290664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic-Aided Fabrication of Nanostructured Au-Ring Microelectrodes for Monitoring Transmitters Released from Single Cells.
    Wang K; Zhao X; Li B; Wang K; Zhang X; Mao L; Ewing A; Lin Y
    Anal Chem; 2017 Sep; 89(17):8683-8688. PubMed ID: 28787575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response times of carbon fiber microelectrodes to dynamic changes in catecholamine concentration.
    Venton BJ; Troyer KP; Wightman RM
    Anal Chem; 2002 Feb; 74(3):539-46. PubMed ID: 11838672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled on-chip stimulation of quantal catecholamine release from chromaffin cells using photolysis of caged Ca2+ on transparent indium-tin-oxide microchip electrodes.
    Chen X; Gao Y; Hossain M; Gangopadhyay S; Gillis KD
    Lab Chip; 2008 Jan; 8(1):161-9. PubMed ID: 18094774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells.
    Ges IA; Brindley RL; Currie KP; Baudenbacher FJ
    Lab Chip; 2013 Dec; 13(23):4663-73. PubMed ID: 24126415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploiting Microelectrode Geometry for Comprehensive Detection of Individual Exocytosis Events at Single Cells.
    De Alwis AC; Denison JD; Shah R; McCarty GS; Sombers LA
    ACS Sens; 2023 Aug; 8(8):3187-3194. PubMed ID: 37552870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative investigations of amperometric spike feet suggest different controlling factors of the fusion pore in exocytosis at chromaffin cells.
    Amatore C; Arbault S; Bonifas I; Guille M
    Biophys Chem; 2009 Aug; 143(3):124-31. PubMed ID: 19501951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The exocytotic event in chromaffin cells revealed by patch amperometry.
    Albillos A; Dernick G; Horstmann H; Almers W; Alvarez de Toledo G; Lindau M
    Nature; 1997 Oct; 389(6650):509-12. PubMed ID: 9333242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of transmitter release from single living cells using conducting polymer microelectrodes.
    Yang SY; Kim BN; Zakhidov AA; Taylor PG; Lee JK; Ober CK; Lindau M; Malliaras GG
    Adv Mater; 2011 Jun; 23(24):H184-8. PubMed ID: 21400618
    [No Abstract]   [Full Text] [Related]  

  • 20. Neurotransmitter Readily Escapes Detection at the Opposing Microelectrode Surface in Typical Amperometric Measurements of Exocytosis at Single Cells.
    McCarty GS; Dunaway LE; Denison JD; Sombers LA
    Anal Chem; 2022 Jul; 94(27):9548-9556. PubMed ID: 35750055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.