These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 19780579)

  • 81. Quantitative Chemical Measurements of Vesicular Transmitters with Electrochemical Cytometry.
    Li X; Dunevall J; Ewing AG
    Acc Chem Res; 2016 Oct; 49(10):2347-2354. PubMed ID: 27622924
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Rapid fabrication of plastic-insulated carbon-fiber electrodes for micro-amperometry.
    Koh DS; Hille B
    J Neurosci Methods; 1999 Apr; 88(1):83-91. PubMed ID: 10379582
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Amperometric noise at thin film band electrodes.
    Larsen ST; Heien ML; Taboryski R
    Anal Chem; 2012 Sep; 84(18):7744-9. PubMed ID: 22928986
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Temporal separation of vesicle release from vesicle fusion during exocytosis.
    Troyer KP; Wightman RM
    J Biol Chem; 2002 Aug; 277(32):29101-7. PubMed ID: 12034731
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids.
    Hanc-Scherer FA; Montiel MA; Montiel V; Herrero E; Sánchez-Sánchez CM
    Phys Chem Chem Phys; 2015 Oct; 17(37):23909-16. PubMed ID: 26307480
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Regulation of exocytosis in chromaffin cells by trans-insertion of lysophosphatidylcholine and arachidonic acid into the outer leaflet of the cell membrane.
    Amatore C; Arbault S; Bouret Y; Guille M; Lemaître F; Verchier Y
    Chembiochem; 2006 Dec; 7(12):1998-2003. PubMed ID: 17086558
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Simultaneous determination of catecholamines, uric acid and ascorbic acid at physiological levels using poly(N-methylpyrrole)/Pd-nanoclusters sensor.
    Atta NF; El-Kady MF; Galal A
    Anal Biochem; 2010 May; 400(1):78-88. PubMed ID: 20064483
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Three distinct modes of exocytosis revealed by amperometry in neuroendocrine cells.
    van Kempen GT; vanderLeest HT; van den Berg RJ; Eilers P; Westerink RH
    Biophys J; 2011 Feb; 100(4):968-77. PubMed ID: 21320441
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Laser patterning of platinum electrodes for safe neurostimulation.
    Green RA; Matteucci PB; Dodds CW; Palmer J; Dueck WF; Hassarati RT; Byrnes-Preston PJ; Lovell NH; Suaning GJ
    J Neural Eng; 2014 Oct; 11(5):056017. PubMed ID: 25188649
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Hydralazine reduces the quantal size of secretory events by displacement of catecholamines from adrenomedullary chromaffin secretory vesicles.
    Machado JD; Gómez JF; Betancor G; Camacho M; Brioso MA; Borges R
    Circ Res; 2002 Nov; 91(9):830-6. PubMed ID: 12411398
    [TBL] [Abstract][Full Text] [Related]  

  • 91. An in vitro characterisation comparing carbon paste and Pt microelectrodes for real-time detection of brain tissue oxygen.
    Bolger FB; Bennett R; Lowry JP
    Analyst; 2011 Oct; 136(19):4028-35. PubMed ID: 21804983
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Microfabricated FSCV-compatible microelectrode array for real-time monitoring of heterogeneous dopamine release.
    Zachek MK; Park J; Takmakov P; Wightman RM; McCarty GS
    Analyst; 2010 Jul; 135(7):1556-63. PubMed ID: 20464031
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Exocytosis of catecholamine (CA)-containing and CA-free granules in chromaffin cells.
    Tabares L; Alés E; Lindau M; Alvarez de Toledo G
    J Biol Chem; 2001 Oct; 276(43):39974-9. PubMed ID: 11524425
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Voltammetric and pharmacological characterization of dopamine release from single exocytotic events at rat pheochromocytoma (PC12) cells.
    Kozminski KD; Gutman DA; Davila V; Sulzer D; Ewing AG
    Anal Chem; 1998 Aug; 70(15):3123-30. PubMed ID: 11013717
    [TBL] [Abstract][Full Text] [Related]  

  • 95. On-Chip Cyclic Voltammetry Measurements Using a Compact 1024-Electrode CMOS IC.
    Huang M; Dorta-Quiñones CI; Minch BA; Lindau M
    Anal Chem; 2021 Jun; 93(22):8027-8034. PubMed ID: 34038637
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The influence of promoter and of electrode material on the cyclic voltammetry of Pisum sativum plastocyanin.
    Johnson DL; Maxwell CJ; Losic D; Shapter JG; Martin LL
    Bioelectrochemistry; 2002 Dec; 58(2):137-47. PubMed ID: 12414319
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Amperometry and cyclic voltammetry with carbon fiber microelectrodes at single cells.
    Mundroff ML; Wightman RM
    Curr Protoc Neurosci; 2002 May; Chapter 6():Unit 6.14. PubMed ID: 18428562
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Real Time Recording of Perifused Chromaffin Cells.
    de Pascual R; Muñoz-Montero A; Gandía L
    Methods Mol Biol; 2023; 2565():105-112. PubMed ID: 36205890
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Good practices in single-cell amperometry.
    Machado DJ; Montesinos MS; Borges R
    Methods Mol Biol; 2008; 440():297-313. PubMed ID: 18369955
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Electrochemical Roughening of Thin-Film Platinum Macro and Microelectrodes.
    Ivanovskaya AN; Belle AM; Yorita A; Qian F; Chen S; Tooker A; Lozada RG; Dahlquist D; Tolosa V
    J Vis Exp; 2019 Jun; (148):. PubMed ID: 31305526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.