BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 19780612)

  • 1. Template-free hydrothermal synthesis and photocatalytic performances of novel Bi2SiO5 nanosheets.
    Chen R; Bi J; Wu L; Wang W; Li Z; Fu X
    Inorg Chem; 2009 Oct; 48(19):9072-6. PubMed ID: 19780612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile hydrothermal synthesis and photocatalytic activity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area.
    Dai XJ; Luo YS; Zhang WD; Fu SY
    Dalton Trans; 2010 Apr; 39(14):3426-32. PubMed ID: 20333334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-step synthesis of the nanostructured AgI/BiOI composites with highly enhanced visible-light photocatalytic performances.
    Cheng H; Huang B; Dai Y; Qin X; Zhang X
    Langmuir; 2010 May; 26(9):6618-24. PubMed ID: 20104877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance visible-light-driven SnS₂/SnO₂ nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS₂ nanoparticles.
    Zhang YC; Du ZN; Li KW; Zhang M; Dionysiou DD
    ACS Appl Mater Interfaces; 2011 May; 3(5):1528-37. PubMed ID: 21476553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Template-free synthesis of a CdSnO3·3H2O hollow-nanocuboid photocatalyst via a facile microwave hydrothermal method.
    Liu G; Liang S; Wu W; Lin R; Qing N; Liang R; Wu L
    Nanotechnology; 2013 Jun; 24(25):255601. PubMed ID: 23723182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic degradation of gaseous toluene over ZnAl2O4 prepared by different methods: a comparative study.
    Li X; Zhu Z; Zhao Q; Wang L
    J Hazard Mater; 2011 Feb; 186(2-3):2089-96. PubMed ID: 21242028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave hydrothermal synthesis of calcium antimony oxide hydroxide with high photocatalytic activity toward benzene.
    Sun M; Li D; Zheng Y; Zhang W; Shao Y; Chen Y; Li W; Fu X
    Environ Sci Technol; 2009 Oct; 43(20):7877-82. PubMed ID: 19921908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From hollow olive-shaped BiVO4 to n-p core-shell BiVO4@Bi2O3 microspheres: controlled synthesis and enhanced visible-light-responsive photocatalytic properties.
    Guan ML; Ma DK; Hu SW; Chen YJ; Huang SM
    Inorg Chem; 2011 Feb; 50(3):800-5. PubMed ID: 21171642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new photocatalyst: Bi2TiO4F2 nanoflakes synthesized by a hydrothermal method.
    Wang S; Huang B; Wang Z; Liu Y; Wei W; Qin X; Zhang X; Dai Y
    Dalton Trans; 2011 Dec; 40(47):12670-5. PubMed ID: 21814697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties.
    Zhang L; Chen D; Jiao X
    J Phys Chem B; 2006 Feb; 110(6):2668-73. PubMed ID: 16471870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and photocatalytic applications of Ag/TiO2-nanotubes.
    Guo G; Yu B; Yu P; Chen X
    Talanta; 2009 Aug; 79(3):570-5. PubMed ID: 19576414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide.
    Li G; Zhang D; Yu JC; Leung MK
    Environ Sci Technol; 2010 Jun; 44(11):4276-81. PubMed ID: 20459055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-crystalline Bi(5)O(7)NO(3) nanofibers: Hydrothermal synthesis, characterization, growth mechanism, and photocatalytic properties.
    Yu S; Zhang G; Gao Y; Huang B
    J Colloid Interface Sci; 2011 Feb; 354(1):322-30. PubMed ID: 21051045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of nanosized Bi3NbO7 and its visible-light photocatalytic property.
    Zhang G; Yang J; Zhang S; Xiong Q; Huang B; Wang J; Gong W
    J Hazard Mater; 2009 Dec; 172(2-3):986-92. PubMed ID: 19699585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A facile hydrothermal method to BiSbO4 nanoplates with superior photocatalytic performance for benzene and 4-chlorophenol degradations.
    You Q; Fu Y; Ding Z; Wu L; Wang X; Li Z
    Dalton Trans; 2011 Jun; 40(21):5774-80. PubMed ID: 21519620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO2 hydrosols with high activity for photocatalytic degradation of formaldehyde in a gaseous phase.
    Liu TX; Li FB; Li XZ
    J Hazard Mater; 2008 Mar; 152(1):347-55. PubMed ID: 17706352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity.
    Zheng L; Zheng Y; Chen C; Zhan Y; Lin X; Zheng Q; Wei K; Zhu J
    Inorg Chem; 2009 Mar; 48(5):1819-25. PubMed ID: 19235945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization and visible light photocatalytic properties of Bi2WO6/rectorite composites.
    Guo Y; Zhang G; Gan H
    J Colloid Interface Sci; 2012 Mar; 369(1):323-9. PubMed ID: 22200331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO2 photocatalyst.
    Li Y; Zhang H; Guo Z; Han J; Zhao X; Zhao Q; Kim SJ
    Langmuir; 2008 Aug; 24(15):8351-7. PubMed ID: 18605746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid microwave hydrothermal synthesis of GaOOH nanorods with photocatalytic activity toward aromatic compounds.
    Sun M; Li D; Zhang W; Fu X; Shao Y; Li W; Xiao G; He Y
    Nanotechnology; 2010 Sep; 21(35):355601. PubMed ID: 20683143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.