These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 19781935)

  • 1. Genetic and optical targeting of neural circuits and behavior--zebrafish in the spotlight.
    Baier H; Scott EK
    Curr Opin Neurobiol; 2009 Oct; 19(5):553-60. PubMed ID: 19781935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical control of zebrafish behavior with halorhodopsin.
    Arrenberg AB; Del Bene F; Baier H
    Proc Natl Acad Sci U S A; 2009 Oct; 106(42):17968-73. PubMed ID: 19805086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movement, technology and discovery in the zebrafish.
    McLean DL; Fetcho JR
    Curr Opin Neurobiol; 2011 Feb; 21(1):110-5. PubMed ID: 20970321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optogenetic probing of functional brain circuitry.
    Mancuso JJ; Kim J; Lee S; Tsuda S; Chow NB; Augustine GJ
    Exp Physiol; 2011 Jan; 96(1):26-33. PubMed ID: 21056968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic manipulation of neural circuits and behavior in Drosophila larvae.
    Honjo K; Hwang RY; Tracey WD
    Nat Protoc; 2012 Jul; 7(8):1470-8. PubMed ID: 22790083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic localization and genetic perturbation of saccade-generating neurons in zebrafish.
    Schoonheim PJ; Arrenberg AB; Del Bene F; Baier H
    J Neurosci; 2010 May; 30(20):7111-20. PubMed ID: 20484654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimodal fast optical interrogation of neural circuitry.
    Zhang F; Wang LP; Brauner M; Liewald JF; Kay K; Watzke N; Wood PG; Bamberg E; Nagel G; Gottschalk A; Deisseroth K
    Nature; 2007 Apr; 446(7136):633-9. PubMed ID: 17410168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry.
    Takeuchi M; Matsuda K; Yamaguchi S; Asakawa K; Miyasaka N; Lal P; Yoshihara Y; Koga A; Kawakami K; Shimizu T; Hibi M
    Dev Biol; 2015 Jan; 397(1):1-17. PubMed ID: 25300581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish.
    Asakawa K; Suster ML; Mizusawa K; Nagayoshi S; Kotani T; Urasaki A; Kishimoto Y; Hibi M; Kawakami K
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1255-60. PubMed ID: 18202183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical control of neuronal activity.
    Szobota S; Isacoff EY
    Annu Rev Biophys; 2010; 39():329-48. PubMed ID: 20192766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish.
    Feierstein CE; Portugues R; Orger MB
    Neuroscience; 2015 Jun; 296():26-38. PubMed ID: 25433239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device.
    Zhu P; Fajardo O; Shum J; Zhang Schärer YP; Friedrich RW
    Nat Protoc; 2012 Jun; 7(7):1410-25. PubMed ID: 22743832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next-generation optical technologies for illuminating genetically targeted brain circuits.
    Deisseroth K; Feng G; Majewska AK; Miesenböck G; Ting A; Schnitzer MJ
    J Neurosci; 2006 Oct; 26(41):10380-6. PubMed ID: 17035522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neurophotonic device for stimulation and recording of neural microcircuits.
    Wang J; Borton DA; Zhang J; Burwell RD; Nurmikko AV
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2935-8. PubMed ID: 21095989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits.
    Bernstein JG; Garrity PA; Boyden ES
    Curr Opin Neurobiol; 2012 Feb; 22(1):61-71. PubMed ID: 22119320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic tools for analyzing the neural circuits of behavior.
    Bernstein JG; Boyden ES
    Trends Cogn Sci; 2011 Dec; 15(12):592-600. PubMed ID: 22055387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zebrafish as a model system for studying neuronal circuits and behavior.
    Fetcho JR; Liu KS
    Ann N Y Acad Sci; 1998 Nov; 860():333-45. PubMed ID: 9928323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remote control of neuronal activity with a light-gated glutamate receptor.
    Szobota S; Gorostiza P; Del Bene F; Wyart C; Fortin DL; Kolstad KD; Tulyathan O; Volgraf M; Numano R; Aaron HL; Scott EK; Kramer RH; Flannery J; Baier H; Trauner D; Isacoff EY
    Neuron; 2007 May; 54(4):535-45. PubMed ID: 17521567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circuit-breakers: optical technologies for probing neural signals and systems.
    Zhang F; Aravanis AM; Adamantidis A; de Lecea L; Deisseroth K
    Nat Rev Neurosci; 2007 Aug; 8(8):577-81. PubMed ID: 17643087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted expression of a chimeric channelrhodopsin in zebrafish under regulation of Gal4-UAS system.
    Umeda K; Shoji W; Sakai S; Muto A; Kawakami K; Ishizuka T; Yawo H
    Neurosci Res; 2013 Jan; 75(1):69-75. PubMed ID: 23044184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.