These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 19782108)
1. Glycosylation of classical swine fever virus E(rns) is essential for binding double-stranded RNA and preventing interferon-beta induction. Luo X; Pan R; Wan C; Liu X; Wu J; Pan Z Virus Res; 2009 Dec; 146(1-2):135-9. PubMed ID: 19782108 [TBL] [Abstract][Full Text] [Related]
2. Classical swine fever virus Erns glycoprotein antagonizes induction of interferon-beta by double-stranded RNA. Luo X; Ling D; Li T; Wan C; Zhang C; Pan Z Can J Microbiol; 2009 Jun; 55(6):698-704. PubMed ID: 19767841 [TBL] [Abstract][Full Text] [Related]
3. Understanding inhibition of viral proteins on type I IFN signaling pathways with modeling and optimization. Zou X; Xiang X; Chen Y; Peng T; Luo X; Pan Z J Theor Biol; 2010 Aug; 265(4):691-703. PubMed ID: 20553733 [TBL] [Abstract][Full Text] [Related]
4. Role of double-stranded RNA and Npro of classical swine fever virus in the activation of monocyte-derived dendritic cells. Bauhofer O; Summerfield A; McCullough KC; Ruggli N Virology; 2005 Dec; 343(1):93-105. PubMed ID: 16154171 [TBL] [Abstract][Full Text] [Related]
5. N(pro) of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN-alpha/beta induction. Ruggli N; Bird BH; Liu L; Bauhofer O; Tratschin JD; Hofmann MA Virology; 2005 Sep; 340(2):265-76. PubMed ID: 16043207 [TBL] [Abstract][Full Text] [Related]
6. Expression and functional characterization of classical swine fever virus E(rns) protein. Chen L; Xia YH; Pan ZS; Zhang CY Protein Expr Purif; 2007 Oct; 55(2):379-87. PubMed ID: 17587595 [TBL] [Abstract][Full Text] [Related]
7. PACT, a double-stranded RNA binding protein acts as a positive regulator for type I interferon gene induced by Newcastle disease virus. Iwamura T; Yoneyama M; Koizumi N; Okabe Y; Namiki H; Samuel CE; Fujita T Biochem Biophys Res Commun; 2001 Mar; 282(2):515-23. PubMed ID: 11401490 [TBL] [Abstract][Full Text] [Related]
8. The viral RNase E(rns) prevents IFN type-I triggering by pestiviral single- and double-stranded RNAs. Mätzener P; Magkouras I; Rümenapf T; Peterhans E; Schweizer M Virus Res; 2009 Mar; 140(1-2):15-23. PubMed ID: 19041350 [TBL] [Abstract][Full Text] [Related]
9. Signal regulatory protein alpha negatively regulates both TLR3 and cytoplasmic pathways in type I interferon induction. Dong LW; Kong XN; Yan HX; Yu LX; Chen L; Yang W; Liu Q; Huang DD; Wu MC; Wang HY Mol Immunol; 2008 Jun; 45(11):3025-35. PubMed ID: 18471880 [TBL] [Abstract][Full Text] [Related]
10. Removal of a N-linked glycosylation site of classical swine fever virus strain Brescia Erns glycoprotein affects virulence in swine. Sainz IF; Holinka LG; Lu Z; Risatti GR; Borca MV Virology; 2008 Jan; 370(1):122-9. PubMed ID: 17904607 [TBL] [Abstract][Full Text] [Related]
11. Secreted expression of the classical swine fever virus glycoprotein E(rns) in yeast and application to a sandwich blocking ELISA. Huang C; Chien MS; Hu CM; Chen CW; Hsieh PC J Virol Methods; 2006 Mar; 132(1-2):40-7. PubMed ID: 16213600 [TBL] [Abstract][Full Text] [Related]
12. Classical swine fever virus can remain virulent after specific elimination of the interferon regulatory factor 3-degrading function of Npro. Ruggli N; Summerfield A; Fiebach AR; Guzylack-Piriou L; Bauhofer O; Lamm CG; Waltersperger S; Matsuno K; Liu L; Gerber M; Choi KH; Hofmann MA; Sakoda Y; Tratschin JD J Virol; 2009 Jan; 83(2):817-29. PubMed ID: 18987150 [TBL] [Abstract][Full Text] [Related]
13. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Matsumoto M; Kikkawa S; Kohase M; Miyake K; Seya T Biochem Biophys Res Commun; 2002 May; 293(5):1364-9. PubMed ID: 12054664 [TBL] [Abstract][Full Text] [Related]
14. Dimerization of glycoprotein E(rns) of classical swine fever virus is not essential for viral replication and infection. van Gennip HG; Hesselink AT; Moormann RJ; Hulst MM Arch Virol; 2005 Nov; 150(11):2271-86. PubMed ID: 15986175 [TBL] [Abstract][Full Text] [Related]
15. Effect of N-glycosylation inhibition on the synthesis and processing of classical swine fever virus glycoproteins. Tyborowska J; Zdunek E; Szewczyk B Acta Biochim Pol; 2007; 54(4):813-9. PubMed ID: 18084653 [TBL] [Abstract][Full Text] [Related]
16. The kinetics of cytokine production and CD25 expression by porcine lymphocyte subpopulations following exposure to classical swine fever virus (CSFV). Suradhat S; Sada W; Buranapraditkun S; Damrongwatanapokin S Vet Immunol Immunopathol; 2005 Jul; 106(3-4):197-208. PubMed ID: 15963818 [TBL] [Abstract][Full Text] [Related]
17. Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro. La Rocca SA; Herbert RJ; Crooke H; Drew TW; Wileman TE; Powell PP J Virol; 2005 Jun; 79(11):7239-47. PubMed ID: 15890962 [TBL] [Abstract][Full Text] [Related]
18. Interaction of classical swine fever virus with membrane-associated heparan sulfate: role for virus replication in vivo and virulence. Hulst MM; van Gennip HG; Vlot AC; Schooten E; de Smit AJ; Moormann RJ J Virol; 2001 Oct; 75(20):9585-95. PubMed ID: 11559790 [TBL] [Abstract][Full Text] [Related]
19. Identification of a conserved motif that is necessary for binding of the vaccinia virus E3L gene products to double-stranded RNA. Chang HW; Jacobs BL Virology; 1993 Jun; 194(2):537-47. PubMed ID: 8099244 [TBL] [Abstract][Full Text] [Related]