BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19782397)

  • 1. Controlled compaction with ruthenium-catalyzed photochemical cross-linking of fibrin-based engineered connective tissue.
    Syedain ZH; Bjork J; Sando L; Tranquillo RT
    Biomaterials; 2009 Dec; 30(35):6695-701. PubMed ID: 19782397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruthenium-catalyzed photo cross-linking of fibrin-based engineered tissue.
    Bjork JW; Johnson SL; Tranquillo RT
    Biomaterials; 2011 Apr; 32(10):2479-88. PubMed ID: 21196047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical cross-linking for collagen-based scaffolds: a study on optical properties, mechanical properties, stability, and hematocompatibility.
    Chan BP; Hui TY; Chan OC; So KF; Lu W; Cheung KM; Salomatina E; Yaroslavsky A
    Tissue Eng; 2007 Jan; 13(1):73-85. PubMed ID: 17518582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Horseradish Peroxidase-Catalyzed Crosslinking of Fibrin Microthread Scaffolds.
    Carnes ME; Gonyea CR; Mooney RG; Njihia JW; Coburn JM; Pins GD
    Tissue Eng Part C Methods; 2020 Jun; 26(6):317-331. PubMed ID: 32364015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures.
    Cummings CL; Gawlitta D; Nerem RM; Stegemann JP
    Biomaterials; 2004 Aug; 25(17):3699-706. PubMed ID: 15020145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue.
    Syedain ZH; Weinberg JS; Tranquillo RT
    Proc Natl Acad Sci U S A; 2008 May; 105(18):6537-42. PubMed ID: 18436647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue engineered vessel from a biodegradable electrospun scaffold stimulated with mechanical stretch.
    Hodge J; Quint C
    Biomed Mater; 2020 Jul; 15(5):055006. PubMed ID: 32348975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fibrin gels exhibit improved biological, structural, and mechanical properties compared with collagen gels in cell-based tendon tissue-engineered constructs.
    Breidenbach AP; Dyment NA; Lu Y; Rao M; Shearn JT; Rowe DW; Kadler KE; Butler DL
    Tissue Eng Part A; 2015 Feb; 21(3-4):438-50. PubMed ID: 25266738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective stiffening of fibrin hydrogels with micron resolution via photocrosslinking.
    Keating M; Lim M; Hu Q; Botvinick E
    Acta Biomater; 2019 Mar; 87():88-96. PubMed ID: 30660778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosslinked fibrin gels for tissue engineering: two approaches to improve their properties.
    Gamboa-Martínez TC; Luque-Guillén V; González-García C; Gómez Ribelles JL; Gallego-Ferrer G
    J Biomed Mater Res A; 2015 Feb; 103(2):614-21. PubMed ID: 24771715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications.
    Zhang Y; Heher P; Hilborn J; Redl H; Ossipov DA
    Acta Biomater; 2016 Jul; 38():23-32. PubMed ID: 27134013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete crosslinked fibrin microthread scaffolds for tissue regeneration.
    Cornwell KG; Pins GD
    J Biomed Mater Res A; 2007 Jul; 82(1):104-12. PubMed ID: 17269139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemically cross-linked collagen gels as three-dimensional scaffolds for tissue engineering.
    Ibusuki S; Halbesma GJ; Randolph MA; Redmond RW; Kochevar IE; Gill TJ
    Tissue Eng; 2007 Aug; 13(8):1995-2001. PubMed ID: 17518705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: fabrication and an in vitro evaluation.
    Zhao H; Ma L; Gong Y; Gao C; Shen J
    J Mater Sci Mater Med; 2009 Jan; 20(1):135-43. PubMed ID: 18704656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real time responses of fibroblasts to plastically compressed fibrillar collagen hydrogels.
    Ghezzi CE; Muja N; Marelli B; Nazhat SN
    Biomaterials; 2011 Jul; 32(21):4761-72. PubMed ID: 21514662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fusion of concentrically layered tubular tissue constructs increases burst strength.
    Huynh TN; Tranquillo RT
    Ann Biomed Eng; 2010 Jun; 38(6):2226-36. PubMed ID: 20431952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genipin-induced changes in collagen gels: correlation of mechanical properties to fluorescence.
    Sundararaghavan HG; Monteiro GA; Lapin NA; Chabal YJ; Miksan JR; Shreiber DI
    J Biomed Mater Res A; 2008 Nov; 87(2):308-20. PubMed ID: 18181104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of genipin cross-linked fibrin-agarose hydrogel tissue-like models for tissue engineering applications.
    Campos F; Bonhome-Espinosa AB; Vizcaino G; Rodriguez IA; Duran-Herrera D; López-López MT; Sánchez-Montesinos I; Alaminos M; Sánchez-Quevedo MC; Carriel V
    Biomed Mater; 2018 Feb; 13(2):025021. PubMed ID: 29420310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photo-cross-linking of type I collagen gels in the presence of smooth muscle cells: mechanical properties, cell viability, and function.
    Brinkman WT; Nagapudi K; Thomas BS; Chaikof EL
    Biomacromolecules; 2003; 4(4):890-5. PubMed ID: 12857069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.