BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19783084)

  • 1. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite.
    Zhang Z; Li M; Chen W; Zhu S; Liu N; Zhu L
    Environ Pollut; 2010 Feb; 158(2):514-9. PubMed ID: 19783084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sorption and short-term immobilization of lead and cadmium by nano-hydroxyapatite/biochar in aqueous solution and soil.
    Zhou C; Song X; Wang Y; Wang H; Ge S
    Chemosphere; 2022 Jan; 286(Pt 3):131810. PubMed ID: 34399259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions.
    Hashimoto Y; Taki T; Sato T
    J Environ Manage; 2009 Apr; 90(5):1782-9. PubMed ID: 19111967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.).
    Park JH; Bolan N; Megharaj M; Naidu R
    J Environ Manage; 2011 Apr; 92(4):1115-20. PubMed ID: 21190789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding strength-associated toxicity reduction by birnessite and hydroxyapatite in Pb and Cd contaminated sediments.
    Lee S; An J; Kim YJ; Nam K
    J Hazard Mater; 2011 Feb; 186(2-3):2117-22. PubMed ID: 21255927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into dynamic adsorption of lead by nano-hydroxyapatite prepared with two-stage ultrasound.
    Zhou C; Wang X; Song X; Wang Y; Fang D; Ge S; Zhang R
    Chemosphere; 2020 Aug; 253():126661. PubMed ID: 32278913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remediation of heavy metals contaminated soils by ball milling.
    Montinaro S; Concas A; Pisu M; Cao G
    Chemosphere; 2007 Mar; 67(4):631-9. PubMed ID: 17188323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions.
    Handley-Sidhu S; Renshaw JC; Yong P; Kerley R; Macaskie LE
    Biotechnol Lett; 2011 Jan; 33(1):79-87. PubMed ID: 20824306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of different phosphate amendments on availability of metals in contaminated soil.
    Chen S; Xu M; Ma Y; Yang J
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):278-85. PubMed ID: 16887186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite).
    Chaturvedi PK; Seth CS; Misra V
    Chemosphere; 2006 Aug; 64(7):1109-14. PubMed ID: 16423377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of aqueous lead by poorly-crystalline hydroxyapatites.
    Hashimoto Y; Sato T
    Chemosphere; 2007 Nov; 69(11):1775-82. PubMed ID: 17606289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening hydroxyapatite for cadmium and lead immobilization in aqueous solution and contaminated soil: The role of surface area.
    Li H; Guo X; Ye X
    J Environ Sci (China); 2017 Feb; 52():141-150. PubMed ID: 28254032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils.
    Park JH; Bolan NS; Chung JW; Naidu R; Megharaj M
    J Environ Monit; 2011 Aug; 13(8):2234-42. PubMed ID: 21748178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divalent Cd and Pb uptake on calcite {1014} cleavage faces: an XPS and AFM study.
    Chada VG; Hausner DB; Strongin DR; Rouff AA; Reeder RJ
    J Colloid Interface Sci; 2005 Aug; 288(2):350-60. PubMed ID: 15927599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorption of divalent Pb, Cd and Zn on aragonite and calcite mollusk shells.
    Du Y; Lian F; Zhu L
    Environ Pollut; 2011 Jul; 159(7):1763-8. PubMed ID: 21550150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cadmium removal from single- and multi-metal (Cd + Pb + Zn + Cu) solutions by sorption on hydroxyapatite.
    Corami A; Mignardi S; Ferrini V
    J Colloid Interface Sci; 2008 Jan; 317(2):402-8. PubMed ID: 17949731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production.
    Mohan D; Pittman CU; Bricka M; Smith F; Yancey B; Mohammad J; Steele PH; Alexandre-Franco MF; Gómez-Serrano V; Gong H
    J Colloid Interface Sci; 2007 Jun; 310(1):57-73. PubMed ID: 17331527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The remediation of the lead-polluted garden soil by natural zeolite.
    Li H; Shi WY; Shao HB; Shao MA
    J Hazard Mater; 2009 Sep; 169(1-3):1106-11. PubMed ID: 19428181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential sorption of lead and cadmium in three tropical soils.
    Appel C; Ma LQ; Rhue RD; Reve W
    Environ Pollut; 2008 Sep; 155(1):132-40. PubMed ID: 18069107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.