BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 19783207)

  • 1. Motoneuron excitability: the importance of neuromodulatory inputs.
    Heckman CJ; Mottram C; Quinlan K; Theiss R; Schuster J
    Clin Neurophysiol; 2009 Dec; 120(12):2040-2054. PubMed ID: 19783207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior.
    Heckman CJ; Lee RH; Brownstone RM
    Trends Neurosci; 2003 Dec; 26(12):688-95. PubMed ID: 14624854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic control of motoneuronal excitability.
    Rekling JC; Funk GD; Bayliss DA; Dong XW; Feldman JL
    Physiol Rev; 2000 Apr; 80(2):767-852. PubMed ID: 10747207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5-HT
    Thorstensen JR; Taylor JL; Kavanagh JJ
    Eur J Neurosci; 2022 Jul; 56(1):3674-3686. PubMed ID: 35445439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulations of the effects of different synaptic input systems on the steady-state input-output structure of the motoneuron pool.
    Heckman CJ
    J Neurophysiol; 1994 May; 71(5):1727-39. PubMed ID: 7914915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns.
    Heckman CJ; Johnson M; Mottram C; Schuster J
    Neuroscientist; 2008 Jun; 14(3):264-75. PubMed ID: 18381974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. M-type potassium currents differentially affect activation of motoneuron subtypes and tune recruitment gain.
    Sharples SA; Broadhead MJ; Gray JA; Miles GB
    J Physiol; 2023 Dec; 601(24):5751-5775. PubMed ID: 37988235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Input-output functions of mammalian motoneurons.
    Powers RK; Binder MD
    Rev Physiol Biochem Pharmacol; 2001; 143():137-263. PubMed ID: 11428264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistent inward currents in motoneuron dendrites: implications for motor output.
    Heckmann CJ; Gorassini MA; Bennett DJ
    Muscle Nerve; 2005 Feb; 31(2):135-56. PubMed ID: 15736297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic control of motoneuron excitability in rodents: from months to milliseconds.
    Funk GD; Parkis MA; Selvaratnam SR; Robinson DM; Miles GB; Peebles KC
    Clin Exp Pharmacol Physiol; 2000; 27(1-2):120-5. PubMed ID: 10696540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modeling study of spinal motoneuron recruitment regulated by ionic channels during fictive locomotion.
    Zhang Q; Dai Y
    J Comput Neurosci; 2020 Nov; 48(4):409-428. PubMed ID: 32895895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A re-examination of the possibility of controlling the firing rate gain of neurons by balancing excitatory and inhibitory conductances.
    Capaday C
    Exp Brain Res; 2002 Mar; 143(1):67-77. PubMed ID: 11907692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendritic and Axonal L-Type Calcium Channels Cooperate to Enhance Motoneuron Firing Output during
    Kadas D; Klein A; Krick N; Worrell JW; Ryglewski S; Duch C
    J Neurosci; 2017 Nov; 37(45):10971-10982. PubMed ID: 28986465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic control of the shape of the motoneuron pool input-output function.
    Powers RK; Heckman CJ
    J Neurophysiol; 2017 Mar; 117(3):1171-1184. PubMed ID: 28053245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motoneuron output regulated by ionic channels: a modeling study of motoneuron frequency-current relationships during fictive locomotion.
    Dai Y; Cheng Y; Fedirchuk B; Jordan LM; Chu J
    J Neurophysiol; 2018 Oct; 120(4):1840-1858. PubMed ID: 30044677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Firing rate modulation of motoneurons activated by cutaneous and muscle receptor afferents in the decerebrate cat.
    Prather JF; Clark BD; Cope TC
    J Neurophysiol; 2002 Oct; 88(4):1867-79. PubMed ID: 12364513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concurrent inhibition and excitation of phrenic motoneurons during inspiration: phase-specific control of excitability.
    Parkis MA; Dong X; Feldman JL; Funk GD
    J Neurosci; 1999 Mar; 19(6):2368-80. PubMed ID: 10066287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facilitation of spinal α-motoneuron excitability by histamine and the underlying ionic mechanisms.
    Wu GY; Zhuang QX; Zhang XY; Li HZ; Wang JJ; Zhu JN
    Sheng Li Xue Bao; 2019 Dec; 71(6):809-823. PubMed ID: 31879736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-dependent control of lumbar motoneurons by the hypocretinergic system.
    Yamuy J; Fung SJ; Xi M; Chase MH
    Exp Neurol; 2010 Feb; 221(2):335-45. PubMed ID: 19962375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of baclofen on spinal reflexes and persistent inward currents in motoneurons of chronic spinal rats with spasticity.
    Li Y; Li X; Harvey PJ; Bennett DJ
    J Neurophysiol; 2004 Nov; 92(5):2694-703. PubMed ID: 15486423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.