These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 19783214)

  • 21. Drug Discovery Platform Targeting M. tuberculosis with Human Embryonic Stem Cell-Derived Macrophages.
    Han HW; Seo HH; Jo HY; Han HJ; Falcão VCA; Delorme V; Heo J; Shum D; Choi JH; Lee JM; Lee SH; Heo HR; Hong SH; Park MH; Thimmulappa RK; Kim JH
    Stem Cell Reports; 2019 Dec; 13(6):980-991. PubMed ID: 31680058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing hit identification in Mycobacterium tuberculosis drug discovery using validated dual-event Bayesian models.
    Ekins S; Reynolds RC; Franzblau SG; Wan B; Freundlich JS; Bunin BA
    PLoS One; 2013; 8(5):e63240. PubMed ID: 23667592
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hollow Fiber System Model for Tuberculosis: The European Medicines Agency Experience.
    Cavaleri M; Manolis E
    Clin Infect Dis; 2015 Aug; 61 Suppl 1():S1-4. PubMed ID: 26224766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. More than cholesterol catabolism: regulatory vulnerabilities in Mycobacterium tuberculosis.
    Bonds AC; Sampson NS
    Curr Opin Chem Biol; 2018 Jun; 44():39-46. PubMed ID: 29906645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bayesian models for screening and TB Mobile for target inference with Mycobacterium tuberculosis.
    Ekins S; Casey AC; Roberts D; Parish T; Bunin BA
    Tuberculosis (Edinb); 2014 Mar; 94(2):162-9. PubMed ID: 24440548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Yeast three-hybrid screening for identifying anti-tuberculosis drug targets.
    Moser S; Johnsson K
    Chembiochem; 2013 Nov; 14(17):2239-42. PubMed ID: 24133019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parallel synthesis of chiral pentaamines and pyrrolidine containing bis-heterocyclic libraries. Multiple scaffolds with multiple building blocks: a double diversity for the identification of new antitubercular compounds.
    Nefzi A; Appel J; Arutyunyan S; Houghten RA
    Bioorg Med Chem Lett; 2009 Sep; 19(17):5169-75. PubMed ID: 19632841
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discovery of Mycobacterium tuberculosis α-1,4-glucan branching enzyme (GlgB) inhibitors by structure- and ligand-based virtual screening.
    Dkhar HK; Gopalsamy A; Loharch S; Kaur A; Bhutani I; Saminathan K; Bhagyaraj E; Chandra V; Swaminathan K; Agrawal P; Parkesh R; Gupta P
    J Biol Chem; 2015 Jan; 290(1):76-89. PubMed ID: 25384979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuberculosis Drug Discovery: A Decade of Hit Assessment for Defined Targets.
    Oh S; Trifonov L; Yadav VD; Barry CE; Boshoff HI
    Front Cell Infect Microbiol; 2021; 11():611304. PubMed ID: 33791235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design, synthesis and investigation on the structure-activity relationships of N-substituted 2-aminothiazole derivatives as antitubercular agents.
    Pieroni M; Wan B; Cho S; Franzblau SG; Costantino G
    Eur J Med Chem; 2014 Jan; 72():26-34. PubMed ID: 24333612
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of new benzamide inhibitor against α-subunit of tryptophan synthase from Mycobacterium tuberculosis through structure-based virtual screening, anti-tuberculosis activity and molecular dynamics simulations.
    Naz S; Farooq U; Ali S; Sarwar R; Khan S; Abagyan R
    J Biomol Struct Dyn; 2019 Mar; 37(4):1043-1053. PubMed ID: 29502488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into Integrated Lead Generation and Target Identification in Malaria and Tuberculosis Drug Discovery.
    Okombo J; Chibale K
    Acc Chem Res; 2017 Jul; 50(7):1606-1616. PubMed ID: 28636311
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anti-tuberculosis activity of some N-pentopyranosylamines.
    Moczulska A
    Acta Pol Pharm; 2004; 61(4):259-62. PubMed ID: 15575591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, Biological Evaluation and Molecular Docking Studies of New Pyrazolines as an Antitubercular and Cytotoxic Agents.
    Lokesh BVS; Prasad YR; Shaik AB
    Infect Disord Drug Targets; 2019; 19(3):310-321. PubMed ID: 30556506
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perspective: Challenges and opportunities in TB drug discovery from phenotypic screening.
    Manjunatha UH; Smith PW
    Bioorg Med Chem; 2015 Aug; 23(16):5087-97. PubMed ID: 25577708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon.
    Bhat ZS; Rather MA; Maqbool M; Ahmad Z
    Biomed Pharmacother; 2018 Jul; 103():1733-1747. PubMed ID: 29864964
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Sawicki R; Ginalska G
    Future Med Chem; 2019 Aug; 11(16):2193-2203. PubMed ID: 31538522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validating new tuberculosis computational models with public whole cell screening aerobic activity datasets.
    Ekins S; Freundlich JS
    Pharm Res; 2011 Aug; 28(8):1859-69. PubMed ID: 21547522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Why are membrane targets discovered by phenotypic screens and genome sequencing in Mycobacterium tuberculosis?
    Goldman RC
    Tuberculosis (Edinb); 2013 Nov; 93(6):569-88. PubMed ID: 24119636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Current Advances in Antitubercular Drug Discovery: Potent Prototypes and New Targets.
    Dos Santos Fernandes GF; Jornada DH; de Souza PC; Chin CM; Pavan FR; Dos Santos JL
    Curr Med Chem; 2015; 22(27):3133-61. PubMed ID: 26282941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.