These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19783338)

  • 1. An approach for arsenic in a contaminated soil: speciation, fractionation, extraction and effluent decontamination.
    Giacomino A; Malandrino M; Abollino O; Velayutham M; Chinnathangavel T; Mentasti E
    Environ Pollut; 2010 Feb; 158(2):416-23. PubMed ID: 19783338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of pilot-scale acid washing of soil contaminated with As, Zn and Ni using the BCR three-step sequential extraction.
    Ko I; Chang YY; Lee CH; Kim KW
    J Hazard Mater; 2005 Dec; 127(1-3):1-13. PubMed ID: 16122872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil.
    Kumpiene J; Ore S; Renella G; Mench M; Lagerkvist A; Maurice C
    Environ Pollut; 2006 Nov; 144(1):62-9. PubMed ID: 16517035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of EDTA washing on the species and mobility of heavy metals residual in soils.
    Zhang W; Huang H; Tan F; Wang H; Qiu R
    J Hazard Mater; 2010 Jan; 173(1-3):369-76. PubMed ID: 19748734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical extraction of arsenic from contaminated soil under subcritical conditions.
    Oh SY; Yoon MK; Kim IH; Kim JY; Bae W
    Sci Total Environ; 2011 Jul; 409(16):3066-72. PubMed ID: 21601910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances.
    Abollino O; Aceto M; Malandrino M; Sarzanini C; Mentasti E
    Water Res; 2003 Apr; 37(7):1619-27. PubMed ID: 12600390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remediation of toxic metal contaminated soil by washing with biodegradable aminopolycarboxylate chelants.
    Begum ZA; Rahman IM; Tate Y; Sawai H; Maki T; Hasegawa H
    Chemosphere; 2012 Jun; 87(10):1161-70. PubMed ID: 22391046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China.
    Zhao X; Dong D; Hua X; Dong S
    J Hazard Mater; 2009 Oct; 170(2-3):570-7. PubMed ID: 19500903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speciation and fractionation of heavy metals in soil experimentally contaminated with Pb, Cd, Cu and Zn together and effects on soil negative surface charge.
    Zhou DM; Hao XZ; Tu C; Chen HM; Si YB
    J Environ Sci (China); 2002 Oct; 14(4):439-44. PubMed ID: 12491715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: a combined approach.
    Kierczak J; Neel C; Aleksander-Kwaterczak U; Helios-Rybicka E; Bril H; Puziewicz J
    Chemosphere; 2008 Oct; 73(5):776-84. PubMed ID: 18649917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical fractionation and translocation of heavy metals in Canna indica L. grown on industrial waste amended soil.
    Bose S; Jain A; Rai V; Ramanathan AL
    J Hazard Mater; 2008 Dec; 160(1):187-93. PubMed ID: 18433999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of ultrasonic to speciation analysis of heavy metals in soil.
    Sun FS; Zhan ZY; Zhang KS; Wang Y
    J Environ Sci (China); 2004; 16(6):957-61. PubMed ID: 15900728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot-scale washing of metal contaminated garden soil using EDTA.
    Voglar D; Lestan D
    J Hazard Mater; 2012 May; 215-216():32-9. PubMed ID: 22410723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractionation and elemental association of Zn, Cd and Pb in soils contaminated by Zn minings using a continuous-flow sequential extraction.
    Buanuam J; Shiowatana J; Pongsakul P
    J Environ Monit; 2005 Aug; 7(8):778-84. PubMed ID: 16049578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous mobilization of heavy metals and polychlorinated biphenyl (PCB) compounds from soil with cyclodextrin and EDTA in admixture.
    Ehsan S; Prasher SO; Marshall WD
    Chemosphere; 2007 May; 68(1):150-8. PubMed ID: 17258274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit.
    Markiewicz-Patkowska J; Hursthouse A; Przybyla-Kij H
    Environ Int; 2005 May; 31(4):513-21. PubMed ID: 15788192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectivity sequences and sorption capacities of phosphatic clay and humus rich soil towards the heavy metals present in zinc mine tailing.
    Chaturvedi PK; Seth CS; Misra V
    J Hazard Mater; 2007 Aug; 147(3):698-705. PubMed ID: 17303325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.