These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 1978340)
1. Tertiary structural constraints on protein evolutionary diversity: templates, key residues and structure prediction. Overington J; Johnson MS; Sali A; Blundell TL Proc Biol Sci; 1990 Aug; 241(1301):132-45. PubMed ID: 1978340 [TBL] [Abstract][Full Text] [Related]
2. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds. Overington J; Donnelly D; Johnson MS; Sali A; Blundell TL Protein Sci; 1992 Feb; 1(2):216-26. PubMed ID: 1304904 [TBL] [Abstract][Full Text] [Related]
3. Alignment and searching for common protein folds using a data bank of structural templates. Johnson MS; Overington JP; Blundell TL J Mol Biol; 1993 Jun; 231(3):735-52. PubMed ID: 8515448 [TBL] [Abstract][Full Text] [Related]
4. Functional restraints on the patterns of amino acid substitutions: application to sequence-structure homology recognition. Chelliah V; Blundell T; Mizuguchi K Proteins; 2005 Dec; 61(4):722-31. PubMed ID: 16193489 [TBL] [Abstract][Full Text] [Related]
5. Tolerance to the substitution of buried apolar residues by charged residues in the homologous protein structures. Balaji S; Aruna S; Srinivasan N Proteins; 2003 Dec; 53(4):783-91. PubMed ID: 14635121 [TBL] [Abstract][Full Text] [Related]
6. A structural dissection of amino acid substitutions in helical transmembrane proteins. Mokrab Y; Stevens TJ; Mizuguchi K Proteins; 2010 Nov; 78(14):2895-907. PubMed ID: 20715054 [TBL] [Abstract][Full Text] [Related]
7. Sequence and structure conservation in a protein core. Rodionov MA; Blundell TL Proteins; 1998 Nov; 33(3):358-66. PubMed ID: 9829695 [TBL] [Abstract][Full Text] [Related]
8. Fragment ranking in modelling of protein structure. Conformationally constrained environmental amino acid substitution tables. Topham CM; McLeod A; Eisenmenger F; Overington JP; Johnson MS; Blundell TL J Mol Biol; 1993 Jan; 229(1):194-220. PubMed ID: 8421300 [TBL] [Abstract][Full Text] [Related]
9. Discarding functional residues from the substitution table improves predictions of active sites within three-dimensional structures. Gong S; Blundell TL PLoS Comput Biol; 2008 Oct; 4(10):e1000179. PubMed ID: 18833291 [TBL] [Abstract][Full Text] [Related]
10. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments. Yang AS; Honig B J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778 [TBL] [Abstract][Full Text] [Related]
11. Constructing amino acid residue substitution classes maximally indicative of local protein structure. Thompson MJ; Goldstein RA Proteins; 1996 May; 25(1):28-37. PubMed ID: 8727317 [TBL] [Abstract][Full Text] [Related]
12. Residue-residue contact substitution probabilities derived from aligned three-dimensional structures and the identification of common folds. Rodionov MA; Johnson MS Protein Sci; 1994 Dec; 3(12):2366-77. PubMed ID: 7756991 [TBL] [Abstract][Full Text] [Related]
13. Structural and functional restraints in the evolution of protein families and superfamilies. Gong S; Worth CL; Bickerton GR; Lee S; Tanramluk D; Blundell TL Biochem Soc Trans; 2009 Aug; 37(Pt 4):727-33. PubMed ID: 19614584 [TBL] [Abstract][Full Text] [Related]
14. Predicting the conformation of proteins from sequences. Progress and future progress. Benner SA J Mol Recognit; 1995; 8(1-2):9-28. PubMed ID: 7598957 [TBL] [Abstract][Full Text] [Related]
15. The role played by environmental residues on sidechain torsional angles within homologous families of proteins: a new method of sidechain modeling. Ogata K; Umeyama H Proteins; 1998 Jun; 31(4):355-69. PubMed ID: 9626696 [TBL] [Abstract][Full Text] [Related]
16. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. I. Solvent accessibility classes. Wako H; Blundell TL J Mol Biol; 1994 May; 238(5):682-92. PubMed ID: 8182743 [TBL] [Abstract][Full Text] [Related]
17. Distinguishing structural and functional restraints in evolution in order to identify interaction sites. Chelliah V; Chen L; Blundell TL; Lovell SC J Mol Biol; 2004 Oct; 342(5):1487-504. PubMed ID: 15364576 [TBL] [Abstract][Full Text] [Related]
18. [A turning point in the knowledge of the structure-function-activity relations of elastin]. Alix AJ J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705 [TBL] [Abstract][Full Text] [Related]
19. Database of homology-derived protein structures and the structural meaning of sequence alignment. Sander C; Schneider R Proteins; 1991; 9(1):56-68. PubMed ID: 2017436 [TBL] [Abstract][Full Text] [Related]
20. Evolution of protein cores. Constraints in point mutations as observed in globin tertiary structures. Bordo D; Argos P J Mol Biol; 1990 Feb; 211(4):975-88. PubMed ID: 2313703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]