BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19783429)

  • 1. Sawdust pellets from coniferous species as adsorbents for NO2 removal.
    Pietrzak R
    Bioresour Technol; 2010 Feb; 101(3):907-13. PubMed ID: 19783429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonaceous adsorbents prepared by physical activation of pine sawdust and their application for removal of NO2 in dry and wet conditions.
    Nowicki P; Pietrzak R
    Bioresour Technol; 2010 Aug; 101(15):5802-7. PubMed ID: 20231091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent.
    Mohan D; Rajput S; Singh VK; Steele PH; Pittman CU
    J Hazard Mater; 2011 Apr; 188(1-3):319-33. PubMed ID: 21354700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production.
    Mohan D; Pittman CU; Bricka M; Smith F; Yancey B; Mohammad J; Steele PH; Alexandre-Franco MF; Gómez-Serrano V; Gong H
    J Colloid Interface Sci; 2007 Jun; 310(1):57-73. PubMed ID: 17331527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra sp.-IO2: sorption mechanism elucidation.
    Venkata Mohan S; Ramanaiah SV; Rajkumar B; Sarma PN
    J Hazard Mater; 2007 Mar; 141(3):465-74. PubMed ID: 16920254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of NO2 with sewage sludge based composite adsorbents.
    Pietrzak R; Bandosz TJ
    J Hazard Mater; 2008 Jun; 154(1-3):946-53. PubMed ID: 18083305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon.
    Karthikeyan T; Rajgopal S; Miranda LR
    J Hazard Mater; 2005 Sep; 124(1-3):192-9. PubMed ID: 15927367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution.
    Ahmad A; Rafatullah M; Sulaiman O; Ibrahim MH; Hashim R
    J Hazard Mater; 2009 Oct; 170(1):357-65. PubMed ID: 19464117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ modification of activated carbons developed from a native invasive wood on removal of trace toxic metals from wastewater.
    de Celis J; Amadeo NE; Cukierman AL
    J Hazard Mater; 2009 Jan; 161(1):217-23. PubMed ID: 18448249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon.
    Bashkova S; Bandosz TJ
    J Colloid Interface Sci; 2009 May; 333(1):97-103. PubMed ID: 19217629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of malachite green from dye wastewater using neem sawdust by adsorption.
    Khattri SD; Singh MK
    J Hazard Mater; 2009 Aug; 167(1-3):1089-94. PubMed ID: 19268452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyre char preparation from waste tyre rubber for dye removal from effluents.
    Mui EL; Cheung WH; McKay G
    J Hazard Mater; 2010 Mar; 175(1-3):151-8. PubMed ID: 19854570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active carbons prepared by chemical activation of plum stones and their application in removal of NO2.
    Nowicki P; Wachowska H; Pietrzak R
    J Hazard Mater; 2010 Sep; 181(1-3):1088-94. PubMed ID: 20576355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrolysis conditions and ozone oxidation effects on ammonia adsorption in biomass generated chars.
    Kastner JR; Miller J; Das KC
    J Hazard Mater; 2009 May; 164(2-3):1420-7. PubMed ID: 18977081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution.
    Liu P; Liu WJ; Jiang H; Chen JJ; Li WW; Yu HQ
    Bioresour Technol; 2012 Oct; 121():235-40. PubMed ID: 22858491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material.
    Zheng JC; Feng HM; Lam MH; Lam PK; Ding YW; Yu HQ
    J Hazard Mater; 2009 Nov; 171(1-3):780-5. PubMed ID: 19596517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating phenanthrene sorption on various wood chars.
    James G; Sabatini DA; Chiou CT; Rutherford D; Scott AC; Karapanagioti HK
    Water Res; 2005 Feb; 39(4):549-58. PubMed ID: 15707627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth.
    Mohan D; Singh KP; Singh VK
    J Hazard Mater; 2006 Jul; 135(1-3):280-95. PubMed ID: 16442720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of carboxylated chitosan and its adsorption properties for cadmium (II), lead (II) and copper (II) from aqueous solutions.
    Lv KL; Du YL; Wang CM
    Water Sci Technol; 2009; 60(2):467-74. PubMed ID: 19633389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of naphthalene from aqueous solution on activated carbons obtained from bean pods.
    Cabal B; Budinova T; Ania CO; Tsyntsarski B; Parra JB; Petrova B
    J Hazard Mater; 2009 Jan; 161(2-3):1150-6. PubMed ID: 18541368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.