These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 1978364)

  • 41. The NMDA receptor antagonist D-2-amino-5-phosphonopentanoate (D-AP5) impairs spatial learning and LTP in vivo at intracerebral concentrations comparable to those that block LTP in vitro.
    Davis S; Butcher SP; Morris RG
    J Neurosci; 1992 Jan; 12(1):21-34. PubMed ID: 1345945
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Long-term potentiation and learning.
    Martinez JL; Derrick BE
    Annu Rev Psychol; 1996; 47():173-203. PubMed ID: 8624136
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synaptic plasticity and learning. II: Do different kinds of plasticity underlie different kinds of learning?
    Morris RG; Halliwell RF; Bowery N
    Neuropsychologia; 1989; 27(1):41-59. PubMed ID: 2540449
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory.
    Morris RG; Moser EI; Riedel G; Martin SJ; Sandin J; Day M; O'Carroll C
    Philos Trans R Soc Lond B Biol Sci; 2003 Apr; 358(1432):773-86. PubMed ID: 12744273
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ageing, hippocampal synaptic activity and magnesium.
    Billard JM
    Magnes Res; 2006 Sep; 19(3):199-215. PubMed ID: 17172010
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5.
    Morris RG
    J Neurosci; 1989 Sep; 9(9):3040-57. PubMed ID: 2552039
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Long-lasting changes in hippocampal synaptic plasticity and cognition in an animal model of NMDA receptor dysfunction in psychosis.
    Wiescholleck V; Manahan-Vaughan D
    Neuropharmacology; 2013 Nov; 74():48-58. PubMed ID: 23376021
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NMDA receptors and memory encoding.
    Morris RG
    Neuropharmacology; 2013 Nov; 74():32-40. PubMed ID: 23628345
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Possible mechanisms of learning, memory and attention impairment in consequence of sleep deprivation].
    Sil'kis IG
    Ross Fiziol Zh Im I M Sechenova; 2012 Oct; 98(10):1200-12. PubMed ID: 23401915
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural synaptic modifications associated with hippocampal LTP and behavioral learning.
    Geinisman Y
    Cereb Cortex; 2000 Oct; 10(10):952-62. PubMed ID: 11007546
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Silent Learning.
    Rossato JI; Moreno A; Genzel L; Yamasaki M; Takeuchi T; Canals S; Morris RGM
    Curr Biol; 2018 Nov; 28(21):3508-3515.e5. PubMed ID: 30415706
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation.
    Frey U; Morris RG
    Trends Neurosci; 1998 May; 21(5):181-8. PubMed ID: 9610879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A synaptic basis for memory storage in the cerebral cortex.
    Bear MF
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13453-9. PubMed ID: 8942956
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toward a representational hypothesis of the role of hippocampal synaptic plasticity in spatial and other forms of learning.
    Morris RG
    Cold Spring Harb Symp Quant Biol; 1990; 55():161-73. PubMed ID: 1983442
    [No Abstract]   [Full Text] [Related]  

  • 55. A dose-related impairment of spatial learning by the NMDA receptor antagonist, 2-amino-5-phosphonovalerate (AP5).
    Butcher SP; Davis S; Morris RG
    Eur Neuropsychopharmacol; 1990 Nov; 1(1):15-20. PubMed ID: 1983778
    [TBL] [Abstract][Full Text] [Related]  

  • 56. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory.
    Hagena H; Hansen N; Manahan-Vaughan D
    Cereb Cortex; 2016 Apr; 26(4):1349-64. PubMed ID: 26804338
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Learning as a Functional State of the Brain: Studies in Wild-Type and Transgenic Animals.
    Delgado-García JM; Gruart A
    Adv Exp Med Biol; 2017; 1015():75-93. PubMed ID: 29080022
    [TBL] [Abstract][Full Text] [Related]  

  • 58. LTP and spatial learning--where to next?
    Jeffery KJ
    Hippocampus; 1997; 7(1):95-110. PubMed ID: 9138673
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Leptin and its role in hippocampal synaptic plasticity.
    Harvey J; Solovyova N; Irving A
    Prog Lipid Res; 2006 Sep; 45(5):369-78. PubMed ID: 16678906
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Early tagging of cortical networks is required for the formation of enduring associative memory.
    Lesburguères E; Gobbo OL; Alaux-Cantin S; Hambucken A; Trifilieff P; Bontempi B
    Science; 2011 Feb; 331(6019):924-8. PubMed ID: 21330548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.