BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19783735)

  • 1. Smicl is required for phosphorylation of RNA polymerase II and affects 3'-end processing of RNA at the midblastula transition in Xenopus.
    Collart C; Ramis JM; Down TA; Smith JC
    Development; 2009 Oct; 136(20):3451-61. PubMed ID: 19783735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The novel Smad-interacting protein Smicl regulates Chordin expression in the Xenopus embryo.
    Collart C; Verschueren K; Rana A; Smith JC; Huylebroeck D
    Development; 2005 Oct; 132(20):4575-86. PubMed ID: 16192311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution analysis of gene activity during the Xenopus mid-blastula transition.
    Collart C; Owens ND; Bhaw-Rosun L; Cooper B; De Domenico E; Patrushev I; Sesay AK; Smith JN; Smith JC; Gilchrist MJ
    Development; 2014 May; 141(9):1927-39. PubMed ID: 24757007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An essential role for transcription before the MBT in Xenopus laevis.
    Skirkanich J; Luxardi G; Yang J; Kodjabachian L; Klein PS
    Dev Biol; 2011 Sep; 357(2):478-91. PubMed ID: 21741375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chk1 Inhibition of the Replication Factor Drf1 Guarantees Cell-Cycle Elongation at the Xenopus laevis Mid-blastula Transition.
    Collart C; Smith JC; Zegerman P
    Dev Cell; 2017 Jul; 42(1):82-96.e3. PubMed ID: 28697335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smicl is a novel Smad interacting protein and cleavage and polyadenylation specificity factor associated protein.
    Collart C; Remacle JE; Barabino S; van Grunsven LA; Nelles L; Schellens A; Van de Putte T; Pype S; Huylebroeck D; Verschueren K
    Genes Cells; 2005 Sep; 10(9):897-906. PubMed ID: 16115198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titration of four replication factors is essential for the Xenopus laevis midblastula transition.
    Collart C; Allen GE; Bradshaw CR; Smith JC; Zegerman P
    Science; 2013 Aug; 341(6148):893-6. PubMed ID: 23907533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of Claspin is triggered by the nucleocytoplasmic ratio at the Xenopus laevis midblastula transition.
    Gotoh T; Kishimoto T; Sible JC
    Dev Biol; 2011 May; 353(2):302-8. PubMed ID: 21396931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small C-terminal Domain Phosphatase 3 Dephosphorylates the Linker Sites of Receptor-regulated Smads (R-Smads) to Ensure Transforming Growth Factor β (TGFβ)-mediated Germ Layer Induction in Xenopus Embryos.
    Sun G; Hu Z; Min Z; Yan X; Guan Z; Su H; Fu Y; Ma X; Chen YG; Zhang MQ; Tao Q; Wu W
    J Biol Chem; 2015 Jul; 290(28):17239-49. PubMed ID: 26013826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cleavage and polyadenylation specificity factor in Xenopus laevis oocytes is a cytoplasmic factor involved in regulated polyadenylation.
    Dickson KS; Bilger A; Ballantyne S; Wickens MP
    Mol Cell Biol; 1999 Aug; 19(8):5707-17. PubMed ID: 10409759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of XChk1 function triggers apoptosis after the midblastula transition in Xenopus laevis embryos.
    Carter AD; Sible JC
    Mech Dev; 2003 Mar; 120(3):315-23. PubMed ID: 12591601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered expression of Chk1 disrupts cell cycle remodeling at the midblastula transition in Xenopus laevis embryos.
    Petrus MJ; Wilhelm DE; Murakami M; Kappas NC; Carter AD; Wroble BN; Sible JC
    Cell Cycle; 2004 Feb; 3(2):212-7. PubMed ID: 14712091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chk1 is activated at the midblastula transition in Xenopus laevis embryos independently of DNA content and the cyclin E/Cdk2 developmental timer.
    Adjerid N; Wroble BN; Sible JC
    Cell Cycle; 2008 Apr; 7(8):1112-6. PubMed ID: 18414041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incomplete RNA polymerase II phosphorylation in Xenopus laevis early embryos.
    Palancade B; Bellier S; Almouzni G; Bensaude O
    J Cell Sci; 2001 Jul; 114(Pt 13):2483-9. PubMed ID: 11559756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental downregulation of Xenopus cyclin E is phosphorylation and nuclear import dependent and is mediated by ubiquitination.
    Brandt Y; Mitchell T; Wu Y; Hartley RS
    Dev Biol; 2011 Jul; 355(1):65-76. PubMed ID: 21539834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional interaction of yeast pre-mRNA 3' end processing factors with RNA polymerase II.
    Licatalosi DD; Geiger G; Minet M; Schroeder S; Cilli K; McNeil JB; Bentley DL
    Mol Cell; 2002 May; 9(5):1101-11. PubMed ID: 12049745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geminin is required for zygotic gene expression at the Xenopus mid-blastula transition.
    Kerns SL; Schultz KM; Barry KA; Thorne TM; McGarry TJ
    PLoS One; 2012; 7(5):e38009. PubMed ID: 22662261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The distribution of RNA polymerase II largest subunit (RPB1) in the Xenopus germinal vesicle.
    Doyle O; Corden JL; Murphy C; Gall JG
    J Struct Biol; 2002; 140(1-3):154-66. PubMed ID: 12490164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of ZFPIP with PBX1 is crucial for proper expression of neural genetic markers during Xenopus development.
    Laurent A; Masse J; Deschamps S; Burel A; Omilli F; Richard-Parpaillon L; Pellerin I
    Dev Growth Differ; 2009 Oct; 51(8):699-706. PubMed ID: 19737294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex.
    Mendez R; Murthy KG; Ryan K; Manley JL; Richter JD
    Mol Cell; 2000 Nov; 6(5):1253-9. PubMed ID: 11106762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.