BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19783784)

  • 1. Structural basis for a reciprocating mechanism of negative cooperativity in dimeric phosphagen kinase activity.
    Wu X; Ye S; Guo S; Yan W; Bartlam M; Rao Z
    FASEB J; 2010 Jan; 24(1):242-52. PubMed ID: 19783784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K; Suzuki T
    FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginine kinase evolved twice: evidence that echinoderm arginine kinase originated from creatine kinase.
    Suzuki T; Kamidochi M; Inoue N; Kawamichi H; Yazawa Y; Furukohri T; Ellington WR
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):671-5. PubMed ID: 10359650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis of two purified forms of arginine kinase: absence of cooperativity in substrate binding of dimeric phosphagen kinase.
    Held BC; Wright-Weber B; Grossman SH
    Comp Biochem Physiol B Biochem Mol Biol; 2007 Sep; 148(1):6-13. PubMed ID: 17572125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for the mechanism and substrate specificity of glycocyamine kinase, a phosphagen kinase family member.
    Lim K; Pullalarevu S; Surabian KT; Howard A; Suzuki T; Moult J; Herzberg O
    Biochemistry; 2010 Mar; 49(9):2031-41. PubMed ID: 20121101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypotaurocyamine kinase evolved from a gene for arginine kinase.
    Uda K; Iwai A; Suzuki T
    FEBS Lett; 2005 Dec; 579(30):6756-62. PubMed ID: 16325813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin and properties of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Saishoji N; Ichinari S; Ellington WR; Suzuki T
    FEBS J; 2005 Jul; 272(14):3521-30. PubMed ID: 16008553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of phosphagen kinase. Primary structure of glycocyamine kinase and arginine kinase from invertebrates.
    Suzuki T; Furukohri T
    J Mol Biol; 1994 Apr; 237(3):353-7. PubMed ID: 8145248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and expression of a lombricine kinase from an echiuroid worm: insights into structural correlates of substrate specificity.
    Ellington WR; Bush J
    Biochem Biophys Res Commun; 2002 Mar; 291(4):939-44. PubMed ID: 11866456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a putative oomycete taurocyamine kinase: Implications for the evolution of the phosphagen kinase family.
    Palmer A; Begres BN; Van Houten JM; Snider MJ; Fraga D
    Comp Biochem Physiol B Biochem Mol Biol; 2013; 166(3-4):173-81. PubMed ID: 23978736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphagen kinase of the giant tubeworm Riftia pachyptila. Cloning and expression of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Tanaka K; Bailly X; Zal F; Suzuki T
    Int J Biol Macromol; 2005 Oct; 37(1-2):54-60. PubMed ID: 16188310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of dimeric nonstandard nucleotide triphosphate pyrophosphatase from Pyrococcus horikoshii OT3: functional significance of interprotomer conformational changes.
    Lokanath NK; Pampa KJ; Takio K; Kunishima N
    J Mol Biol; 2008 Jan; 375(4):1013-25. PubMed ID: 18062990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphagen kinase in Schistosoma japonicum: II. Determination of amino acid residues essential for substrate catalysis using site-directed mutagenesis.
    Tokuhiro S; Nagataki M; Jarilla BR; Uda K; Suzuki T; Sugiura T; Agatsuma T
    Mol Biochem Parasitol; 2014; 194(1-2):56-63. PubMed ID: 24815317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of C-terminal loop residues of dimeric arginine kinase from sea cucumber Stichopus japonicus in catalysis, specificity and structure.
    Zhang JW; Zhao TJ; Wang SL; Guo Q; Liu TT; Zhao F; Wang XC
    Int J Biol Macromol; 2006 May; 38(3-5):203-10. PubMed ID: 16574215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphagen kinase in Schistosoma japonicum: characterization of its enzymatic properties and determination of its gene structure.
    Tokuhiro S; Uda K; Yano H; Nagataki M; Jarilla BR; Suzuki T; Agatsuma T
    Mol Biochem Parasitol; 2013 Apr; 188(2):91-8. PubMed ID: 23603791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of phosphagen specificity loops in arginine kinase.
    Azzi A; Clark SA; Ellington WR; Chapman MS
    Protein Sci; 2004 Mar; 13(3):575-85. PubMed ID: 14978299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of ADP and AMPPNP-bound propionate kinase (TdcD) from Salmonella typhimurium: comparison with members of acetate and sugar kinase/heat shock cognate 70/actin superfamily.
    Simanshu DK; Savithri HS; Murthy MR
    J Mol Biol; 2005 Sep; 352(4):876-92. PubMed ID: 16139298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stichopus japonicus arginine kinase: gene structure and unique substrate recognition system.
    Suzuki T; Yamamoto Y; Umekawa M
    Biochem J; 2000 Nov; 351 Pt 3(Pt 3):579-85. PubMed ID: 11042111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative splicing produces transcripts coding for alpha and beta chains of a hetero-dimeric phosphagen kinase.
    Ellington WR; Yamashita D; Suzuki T
    Gene; 2004 Jun; 334():167-74. PubMed ID: 15256266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.