BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19783807)

  • 1. Micro-organism and cell viability on antimicrobially modified titanium.
    Omori S; Shibata Y; Arimoto T; Igarashi T; Baba K; Miyazaki T
    J Dent Res; 2009 Oct; 88(10):957-62. PubMed ID: 19783807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of chloride formed on anodized titanium surfaces against an oral microorganism.
    Deng JY; Arimoto T; Shibata Y; Omori S; Miyazaki T; Igarashi T
    J Biomater Appl; 2010 Aug; 25(2):179-89. PubMed ID: 19923142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of chemically modified titanium surfaces on protein adsorption and osteoblast precursor cell behavior.
    Protivínský J; Appleford M; Strnad J; Helebrant A; Ong JL
    Int J Oral Maxillofac Implants; 2007; 22(4):542-50. PubMed ID: 17929514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of chemotherapeutic agents on titanium-adherent biofilms.
    Ntrouka V; Hoogenkamp M; Zaura E; van der Weijden F
    Clin Oral Implants Res; 2011 Nov; 22(11):1227-34. PubMed ID: 21320167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors influencing effects of specific COX-2 inhibitor NSAIDs on growth and differentiation of mouse osteoblasts on titanium surfaces.
    Arpornmaeklong P; Akarawatcharangura B; Pripatnanont P
    Int J Oral Maxillofac Implants; 2008; 23(6):1071-81. PubMed ID: 19216276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface nanofeature effects on titanium-adherent human mesenchymal stem cells.
    Valencia S; Gretzer C; Cooper LF
    Int J Oral Maxillofac Implants; 2009; 24(1):38-46. PubMed ID: 19344023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces.
    Finke B; Luethen F; Schroeder K; Mueller PD; Bergemann C; Frant M; Ohl A; Nebe BJ
    Biomaterials; 2007 Oct; 28(30):4521-34. PubMed ID: 17628662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan coatings deliver antimicrobials from titanium implants: a preliminary study.
    Norowski PA; Courtney HS; Babu J; Haggard WO; Bumgardner JD
    Implant Dent; 2011 Feb; 20(1):56-67. PubMed ID: 21278528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of titanium surfaces in cultures of neonatal rat calvarial osteoblast-like cells: an immunohistochemical study.
    Aybar B; Emes Y; Atalay B; Tanrikulu S; Kaya AS; Işsever H; Ceyhan T; Bilir A
    Implant Dent; 2009 Feb; 18(1):75-85. PubMed ID: 19212240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnesium-sputtered titanium for the formation of bioactive coatings.
    Ibasco S; Tamimi F; Meszaros R; Nihouannen DL; Vengallatore S; Harvey E; Barralet JE
    Acta Biomater; 2009 Jul; 5(6):2338-47. PubMed ID: 19357004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The characteristics of in vitro biological activity of titanium surfaces anodically oxidized in chloride solutions.
    Shibata Y; Suzuki D; Omori S; Tanaka R; Murakami A; Kataoka Y; Baba K; Kamijo R; Miyazaki T
    Biomaterials; 2010 Nov; 31(33):8546-55. PubMed ID: 20810162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eugenol inhibited the antimicrobial functions of neutrophils.
    Chen DC; Lee YY; Yeh PY; Lin JC; Chen YL; Hung SL
    J Endod; 2008 Feb; 34(2):176-80. PubMed ID: 18215676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteoblast mechanoresponses on Ti with different surface topographies.
    Sato N; Kubo K; Yamada M; Hori N; Suzuki T; Maeda H; Ogawa T
    J Dent Res; 2009 Sep; 88(9):812-6. PubMed ID: 19767577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial activity of vanadium chloroperoxidase on planktonic Streptococcus mutans cells and Streptococcus mutans biofilms.
    Hoogenkamp MA; Crielaard W; ten Cate JM; Wever R; Hartog AF; Renirie R
    Caries Res; 2009; 43(5):334-8. PubMed ID: 19648743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography.
    Park JW; Kim YJ; Park CH; Lee DH; Ko YG; Jang JH; Lee CS
    Acta Biomater; 2009 Oct; 5(8):3272-80. PubMed ID: 19426841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials.
    Att W; Hori N; Takeuchi M; Ouyang J; Yang Y; Anpo M; Ogawa T
    Biomaterials; 2009 Oct; 30(29):5352-63. PubMed ID: 19595450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bacterial adhesion and biofilm formation.
    Godoy-Gallardo M; Mas-Moruno C; Fernández-Calderón MC; Pérez-Giraldo C; Manero JM; Albericio F; Gil FJ; Rodríguez D
    Acta Biomater; 2014 Aug; 10(8):3522-34. PubMed ID: 24704699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue and fluoride corrosion on Streptococcus mutans adherence to titanium-based implant/component surfaces.
    Correa CB; Pires JR; Fernandes-Filho RB; Sartori R; Vaz LG
    J Prosthodont; 2009 Jul; 18(5):382-7. PubMed ID: 19432761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbiologically induced corrosive properties of the titanium surface.
    Fukushima A; Mayanagi G; Nakajo K; Sasaki K; Takahashi N
    J Dent Res; 2014 May; 93(5):525-9. PubMed ID: 24554541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach to graft bioactive polymer on titanium implants: Improvement of MG 63 cell differentiation onto this coating.
    Hélary G; Noirclère F; Mayingi J; Migonney V
    Acta Biomater; 2009 Jan; 5(1):124-33. PubMed ID: 18809363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.