These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19783813)

  • 1. FSscan: a mechanism-based program to identify +1 ribosomal frameshift hotspots.
    Liao PY; Choi YS; Lee KH
    Nucleic Acids Res; 2009 Nov; 37(21):7302-11. PubMed ID: 19783813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequences that direct significant levels of frameshifting are frequent in coding regions of Escherichia coli.
    Gurvich OL; Baranov PV; Zhou J; Hammer AW; Gesteland RF; Atkins JF
    EMBO J; 2003 Nov; 22(21):5941-50. PubMed ID: 14592990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting.
    Brierley I; Meredith MR; Bloys AJ; Hagervall TG
    J Mol Biol; 1997 Jul; 270(3):360-73. PubMed ID: 9237903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of programmed frameshifting during translation of
    Naeem FM; Gemler BT; McNutt ZA; Bundschuh R; Fredrick K
    RNA; 2024 Jan; 30(2):136-148. PubMed ID: 37949662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KnotInFrame: prediction of -1 ribosomal frameshift events.
    Theis C; Reeder J; Giegerich R
    Nucleic Acids Res; 2008 Oct; 36(18):6013-20. PubMed ID: 18820303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases.
    Hammell AB; Taylor RC; Peltz SW; Dinman JD
    Genome Res; 1999 May; 9(5):417-27. PubMed ID: 10330121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosome collisions alter frameshifting at translational reprogramming motifs in bacterial mRNAs.
    Smith AM; Costello MS; Kettring AH; Wingo RJ; Moore SD
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21769-21779. PubMed ID: 31591196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2.
    Márquez V; Wilson DN; Tate WP; Triana-Alonso F; Nierhaus KH
    Cell; 2004 Jul; 118(1):45-55. PubMed ID: 15242643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of functional, endogenous programmed -1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae.
    Jacobs JL; Belew AT; Rakauskaite R; Dinman JD
    Nucleic Acids Res; 2007; 35(1):165-74. PubMed ID: 17158156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The function of a ribosomal frameshifting signal from human immunodeficiency virus-1 in Escherichia coli.
    Yelverton E; Lindsley D; Yamauchi P; Gallant JA
    Mol Microbiol; 1994 Jan; 11(2):303-13. PubMed ID: 8170392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale mass spectrometry-based analysis of Euplotes octocarinatus supports the high frequency of +1 programmed ribosomal frameshift.
    Wang R; Zhang Z; Du J; Fu Y; Liang A
    Sci Rep; 2016 Sep; 6():33020. PubMed ID: 27597422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ASXL gain-of-function truncation mutants: defective and dysregulated forms of a natural ribosomal frameshifting product?
    Dinan AM; Atkins JF; Firth AE
    Biol Direct; 2017 Oct; 12(1):24. PubMed ID: 29037253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ARFA: a program for annotating bacterial release factor genes, including prediction of programmed ribosomal frameshifting.
    Bekaert M; Atkins JF; Baranov PV
    Bioinformatics; 2006 Oct; 22(20):2463-5. PubMed ID: 16895933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the stacking potential of the base 3' of tandem shift codons on -1 ribosomal frameshifting used for gene expression.
    Bertrand C; Prère MF; Gesteland RF; Atkins JF; Fayet O
    RNA; 2002 Jan; 8(1):16-28. PubMed ID: 11871658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new kinetic model reveals the synergistic effect of E-, P- and A-sites on +1 ribosomal frameshifting.
    Liao PY; Gupta P; Petrov AN; Dinman JD; Lee KH
    Nucleic Acids Res; 2008 May; 36(8):2619-29. PubMed ID: 18344525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic analysis of nonprogrammed frameshift suppression in
    Springstein BL; Paulo JA; Park H; Henry K; Fleming E; Feder Z; Harper JW; Hochschild A
    Proc Natl Acad Sci U S A; 2024 Feb; 121(6):e2317453121. PubMed ID: 38289956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One gene, two proteins: coordinated production of a copper chaperone by differential transcript formation and translational frameshifting in Escherichia coli.
    Drees SL; Klinkert B; Helling S; Beyer DF; Marcus K; Narberhaus F; Lübben M
    Mol Microbiol; 2017 Nov; 106(4):635-645. PubMed ID: 28925527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis of the E site during RF2 programmed frameshifting.
    Sanders CL; Curran JF
    RNA; 2007 Sep; 13(9):1483-91. PubMed ID: 17660276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of tetra- and hepta-nucleotides motifs promoting -1 ribosomal frameshifting in Escherichia coli.
    Sharma V; Prère MF; Canal I; Firth AE; Atkins JF; Baranov PV; Fayet O
    Nucleic Acids Res; 2014 Jun; 42(11):7210-25. PubMed ID: 24875478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.