These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19783828)

  • 1. TrimerDimer: an oligonucleotide-based saturation mutagenesis approach that removes redundant and stop codons.
    Gaytán P; Contreras-Zambrano C; Ortiz-Alvarado M; Morales-Pablos A; Yáñez J
    Nucleic Acids Res; 2009 Oct; 37(18):e125. PubMed ID: 19783828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial codon-based amino acid substitutions.
    Yáñez J; Argüello M; Osuna J; Soberón X; Gaytán P
    Nucleic Acids Res; 2004 Nov; 32(20):e158. PubMed ID: 15537836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified base compositions at degenerate positions of a mutagenic oligonucleotide enhance randomness in site-saturation mutagenesis.
    Airaksinen A; Hovi T
    Nucleic Acids Res; 1998 Jan; 26(2):576-81. PubMed ID: 9421518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elimination of redundant and stop codons during the chemical synthesis of degenerate oligonucleotides. Combinatorial testing on the chromophore region of the red fluorescent protein mKate.
    Gaytán P; Roldán-Salgado A
    ACS Synth Biol; 2013 Aug; 2(8):453-62. PubMed ID: 23654278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthogonal combinatorial mutagenesis: a codon-level combinatorial mutagenesis method useful for low multiplicity and amino acid-scanning protocols.
    Gaytán P; Yáñez J; Sánchez F; Soberón X
    Nucleic Acids Res; 2001 Feb; 29(3):E9. PubMed ID: 11160911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of DMT-mononucleotide and Fmoc-trinucleotide phosphoramidites in oligonucleotide synthesis affords an automatable codon-level mutagenesis method.
    Gaytán P; Yañez J; Sánchez F; Mackie H; Soberón X
    Chem Biol; 1998 Sep; 5(9):519-27. PubMed ID: 9751646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel ceftazidime-resistance beta-lactamases generated by a codon-based mutagenesis method and selection.
    Gaytán P; Osuna J; Soberón X
    Nucleic Acids Res; 2002 Aug; 30(16):e84. PubMed ID: 12177312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic approach to stop-codon scanning mutagenesis.
    Nie L; Lavinder JJ; Sarkar M; Stephany K; Magliery TJ
    J Am Chem Soc; 2011 Apr; 133(16):6177-86. PubMed ID: 21452871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutagenesis using trinucleotide beta-cyanoethyl phosphoramidites.
    Lyttle MH; Napolitano EW; Calio BL; Kauvar LM
    Biotechniques; 1995 Aug; 19(2):274-81. PubMed ID: 8527149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved synthesis of trinucleotide phosphoramidites and generation of randomized oligonucleotide libraries.
    Yagodkin A; Azhayev A; Roivainen J; Antopolsky M; Kayushin A; Korosteleva M; Miroshnikov A; Randolph J; Mackie H
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(5):473-97. PubMed ID: 17578745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Codon-based mutagenesis using dimer-phosphoramidites.
    Neuner P; Cortese R; Monaci P
    Nucleic Acids Res; 1998 Mar; 26(5):1223-7. PubMed ID: 9469829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A general strategy for random insertion and substitution mutagenesis: substoichiometric coupling of trinucleotide phosphoramidites.
    Sondek J; Shortle D
    Proc Natl Acad Sci U S A; 1992 Apr; 89(8):3581-5. PubMed ID: 1565654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loading Determination of DMTr-substituted Resins for Large-scale Oligonucleotide Synthesis.
    Döring T; Weiland K; Plattner C; Huber T; Bächle D; Samson D
    Curr Protoc; 2024 Apr; 4(4):e1029. PubMed ID: 38666611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple-MSSM: a simple and efficient method for simultaneous multi-site saturation mutagenesis.
    Cheng F; Xu JM; Xiang C; Liu ZQ; Zhao LQ; Zheng YG
    Biotechnol Lett; 2017 Apr; 39(4):567-575. PubMed ID: 28044225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-phase synthesis of oligonucleotide glycoconjugates bearing three different glycosyl groups: orthogonally protected bis(hydroxymethyl)-N,N'-bis(3-hydroxypropyl)malondiamide phosphoramidite as key building block.
    Katajisto J; Heinonen P; Lönnberg H
    J Org Chem; 2004 Oct; 69(22):7609-15. PubMed ID: 15497988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of biologically active mutants by combinatorial cassette mutagenesis: exclusion of wild-type codon from degenerate codons.
    Huang W; Santi DV
    Anal Biochem; 1994 May; 218(2):454-7. PubMed ID: 8074306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-synthetic transamination at position N4 of cytosine in oligonucleotides assembled with routinely used phosphoramidites.
    Lartia R; Vallée C; Defrancq E
    Org Biomol Chem; 2020 Dec; 18(47):9632-9638. PubMed ID: 33206749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tandem oligonucleotide synthesis using linker phosphoramidites.
    Pon RT; Yu S
    Nucleic Acids Res; 2005; 33(6):1940-8. PubMed ID: 15814811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient functionalization of oligonucleotides by new achiral nonnucleosidic monomers.
    Kupryushkin MS; Nekrasov MD; Stetsenko DA; Pyshnyi DV
    Org Lett; 2014 Jun; 16(11):2842-5. PubMed ID: 24820262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of 4,4'-dimethoxytrityl-C-phosphonate oligonucleotides.
    Capaldi DC; Gaus HJ; Carty RL; Moore MN; Turney BJ; Decottignies SD; McArdle JV; Scozzari AN; Ravikumar VT; Krotz AH
    Bioorg Med Chem Lett; 2004 Sep; 14(18):4683-90. PubMed ID: 15324888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.