BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 19783981)

  • 1. A role for a neo-sex chromosome in stickleback speciation.
    Kitano J; Ross JA; Mori S; Kume M; Jones FC; Chan YF; Absher DM; Grimwood J; Schmutz J; Myers RM; Kingsley DM; Peichel CL
    Nature; 2009 Oct; 461(7267):1079-83. PubMed ID: 19783981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex chromosome turnover contributes to genomic divergence between incipient stickleback species.
    Yoshida K; Makino T; Yamaguchi K; Shigenobu S; Hasebe M; Kawata M; Kume M; Mori S; Peichel CL; Toyoda A; Fujiyama A; Kitano J
    PLoS Genet; 2014 Mar; 10(3):e1004223. PubMed ID: 24625862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turnover of sex chromosomes and speciation in fishes.
    Kitano J; Peichel CL
    Environ Biol Fishes; 2012; 94(3):549-558. PubMed ID: 26069393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turnover of sex chromosomes in the stickleback fishes (gasterosteidae).
    Ross JA; Urton JR; Boland J; Shapiro MD; Peichel CL
    PLoS Genet; 2009 Feb; 5(2):e1000391. PubMed ID: 19229325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous Histories of Recombination Suppression on Stickleback Sex Chromosomes.
    Sardell JM; Josephson MP; Dalziel AC; Peichel CL; Kirkpatrick M
    Mol Biol Evol; 2021 Sep; 38(10):4403-4418. PubMed ID: 34117766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional divergence of a heterochromatin-binding protein during stickleback speciation.
    Yoshida K; Ishikawa A; Toyoda A; Shigenobu S; Fujiyama A; Kitano J
    Mol Ecol; 2019 Mar; 28(6):1563-1578. PubMed ID: 30117211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Coupling of Female Mate Choice with Polygenic Ecological Divergence Facilitates Stickleback Speciation.
    Bay RA; Arnegard ME; Conte GL; Best J; Bedford NL; McCann SR; Dubin ME; Chan YF; Jones FC; Kingsley DM; Schluter D; Peichel CL
    Curr Biol; 2017 Nov; 27(21):3344-3349.e4. PubMed ID: 29056455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progressive recombination suppression and differentiation in recently evolved neo-sex chromosomes.
    Natri HM; Shikano T; Merilä J
    Mol Biol Evol; 2013 May; 30(5):1131-44. PubMed ID: 23436913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breakdown in postmating isolation and the collapse of a species pair through hybridization.
    Behm JE; Ives AR; Boughman JW
    Am Nat; 2010 Jan; 175(1):11-26. PubMed ID: 19916869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The genomic landscape at a late stage of stickleback speciation: High genomic divergence interspersed by small localized regions of introgression.
    Ravinet M; Yoshida K; Shigenobu S; Toyoda A; Fujiyama A; Kitano J
    PLoS Genet; 2018 May; 14(5):e1007358. PubMed ID: 29791436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological divergence and habitat isolation between two migratory forms of Japanese threespine stickleback (Gasterosteus aculeatus).
    Kume M; Kitano J; Mori S; Shibuya T
    J Evol Biol; 2010 Jul; 23(7):1436-46. PubMed ID: 20456572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The master sex-determination locus in threespine sticklebacks is on a nascent Y chromosome.
    Peichel CL; Ross JA; Matson CK; Dickson M; Grimwood J; Schmutz J; Myers RM; Mori S; Schluter D; Kingsley DM
    Curr Biol; 2004 Aug; 14(16):1416-24. PubMed ID: 15324658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Centromere inactivation on a neo-Y fusion chromosome in threespine stickleback fish.
    Cech JN; Peichel CL
    Chromosome Res; 2016 Dec; 24(4):437-450. PubMed ID: 27553478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speciation in ninespine stickleback: reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback.
    Ishikawa A; Takeuchi N; Kusakabe M; Kume M; Mori S; Takahashi H; Kitano J
    J Evol Biol; 2013 Jul; 26(7):1417-30. PubMed ID: 23663028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Female-biased expression on the X chromosome as a key step in sex chromosome evolution in threespine sticklebacks.
    Leder EH; Cano JM; Leinonen T; O'Hara RB; Nikinmaa M; Primmer CR; Merilä J
    Mol Biol Evol; 2010 Jul; 27(7):1495-503. PubMed ID: 20142438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cytogenetic evidence of rearrangements on the Y chromosome of the threespine stickleback fish.
    Ross JA; Peichel CL
    Genetics; 2008 Aug; 179(4):2173-82. PubMed ID: 18689886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A test of hybrid growth disadvantage in wild, free-ranging species pairs of threespine stickleback (Gasterosteus aculeatus) and its implications for ecological speciation.
    Taylor EB; Gerlinsky C; Farrell N; Gow JL
    Evolution; 2012 Jan; 66(1):240-51. PubMed ID: 22220878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest.
    Bracewell RR; Bentz BJ; Sullivan BT; Good JM
    Nat Commun; 2017 Nov; 8(1):1593. PubMed ID: 29150608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics of ecological divergence during speciation.
    Arnegard ME; McGee MD; Matthews B; Marchinko KB; Conte GL; Kabir S; Bedford N; Bergek S; Chan YF; Jones FC; Kingsley DM; Peichel CL; Schluter D
    Nature; 2014 Jul; 511(7509):307-11. PubMed ID: 24909991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body size differences do not arise from divergent mate preferences in a species pair of threespine stickleback.
    Head ML; Price EA; Boughman JW
    Biol Lett; 2009 Aug; 5(4):517-20. PubMed ID: 19474072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.