These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Waveguide loss optimization in hollow-core ARROW waveguides. Yin D; Barber J; Hawkins A; Schmidt H Opt Express; 2005 Nov; 13(23):9331-6. PubMed ID: 19503133 [TBL] [Abstract][Full Text] [Related]
3. Antiresonant reflecting guidance mechanism in hollow-core fiber for gas pressure sensing. Hou M; Zhu F; Wang Y; Wang Y; Liao C; Liu S; Lu P Opt Express; 2016 Nov; 24(24):27890-27898. PubMed ID: 27906357 [TBL] [Abstract][Full Text] [Related]
4. High efficiency light coupling from antiresonant reflecting optical waveguide to integrated photodetector using an antireflecting layer. Baba T; Kokubun Y Appl Opt; 1990 Jun; 29(18):2781-92. PubMed ID: 20567329 [TBL] [Abstract][Full Text] [Related]
5. Enhancing local luminescence in a hollow ZnO microcolumn by antiresonant reflecting. Yang YH; He XT; Dong HM; Dong JW; Lei HX; Li BJ; Yang GW Nanoscale; 2016 Apr; 8(17):9226-33. PubMed ID: 27087484 [TBL] [Abstract][Full Text] [Related]
6. Visible light guidance in silica capillaries by antiresonant reflection. Rugeland P; Sterner C; Margulis W Opt Express; 2013 Dec; 21(24):29217-22. PubMed ID: 24514473 [TBL] [Abstract][Full Text] [Related]
7. Fiber optofluidic Coriolis flowmeter based on a dual-antiresonant reflecting optical waveguide. Li Z; Gao R; Xin X; Zhang H; Chang H; Guo D; Wang F; Zhou S; Yu C; Liu X Opt Lett; 2022 Jul; 47(13):3259-3262. PubMed ID: 35776600 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of fully integrated antiresonant reflecting optical waveguides using the femtosecond laser direct-write technique. Gross S; Alberich M; Arriola A; Withford MJ; Fuerbach A Opt Lett; 2013 Jun; 38(11):1872-4. PubMed ID: 23722773 [TBL] [Abstract][Full Text] [Related]
9. Micropore and nanopore fabrication in hollow antiresonant reflecting optical waveguides. Holmes MR; Shang T; Hawkins AR; Rudenko M; Measor P; Schmidt H J Micro Nanolithogr MEMS MOEMS; 2010; 9(2):23004. PubMed ID: 21922035 [TBL] [Abstract][Full Text] [Related]
10. Origins of modal loss of antiresonant hollow-core optical fibers in the ultraviolet. Hartung A; Kobelke J; Schwuchow A; Wondraczek K; Bierlich J; Popp J; Frosch T; Schmidt MA Opt Express; 2015 Feb; 23(3):2557-65. PubMed ID: 25836120 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and characterization of hollow waveguide optical switch with variable air core. Bae CH; Koyama F Opt Express; 2005 May; 13(9):3259-63. PubMed ID: 19495227 [TBL] [Abstract][Full Text] [Related]
12. Effective bandwidth of terahertz antiresonant reflecting pipe waveguide. Lai CH; Yeh YS; Yeh CA; Wang YK Opt Express; 2018 Mar; 26(5):6456-6465. PubMed ID: 29529838 [TBL] [Abstract][Full Text] [Related]
13. Terahertz antiresonant-reflecting-hollow-waveguide-based directional coupler operating at antiresonant frequencies. Lai CH; Sun CK; Chang HC Opt Lett; 2011 Sep; 36(18):3590-2. PubMed ID: 21931400 [TBL] [Abstract][Full Text] [Related]
14. Whispering gallery modes of a curved antiresonant reflecting optical waveguide. Gong L; Li Q; Chen Y; Chen X Appl Opt; 1997 Mar; 36(9):1902-5. PubMed ID: 18250881 [TBL] [Abstract][Full Text] [Related]
15. Spot size transformer with a type-B antiresonant reflecting optical waveguide. Kokubun Y; Tamura S; Kondo T Opt Lett; 1992 Dec; 17(24):1746-8. PubMed ID: 19798303 [TBL] [Abstract][Full Text] [Related]
16. 3D-Nanoprinted Antiresonant Hollow-Core Microgap Waveguide: An on-Chip Platform for Integrated Photonic Devices and Sensors. Bürger J; Schalles V; Kim J; Jang B; Zeisberger M; Gargiulo J; de S Menezes L; Schmidt MA; Maier SA ACS Photonics; 2022 Sep; 9(9):3012-3024. PubMed ID: 36164483 [TBL] [Abstract][Full Text] [Related]
17. Hollow ARROW Waveguides on Self-Aligned Pedestals for Improved Geometry and Transmission. Lunt EJ; Wu B; Keeley JM; Measor P; Schmidt H; Hawkins AR IEEE Photonics Technol Lett; 2010 Jul; 22(15):1147-1149. PubMed ID: 21423839 [TBL] [Abstract][Full Text] [Related]
19. Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding. Lai CH; You B; Lu JY; Liu TA; Peng JL; Sun CK; Chang HC Opt Express; 2010 Jan; 18(1):309-22. PubMed ID: 20173851 [TBL] [Abstract][Full Text] [Related]
20. Terahertz wave transmission within metal-clad antiresonant reflecting hollow waveguides. Liu J; Liang H; Zhang M; Su H Appl Opt; 2015 May; 54(14):4549-55. PubMed ID: 25967515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]