BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19784394)

  • 1. Inhibitory effects of polysaccharide extract from Spirulina platensis on corneal neovascularization.
    Yang L; Wang Y; Zhou Q; Chen P; Wang Y; Wang Y; Liu T; Xie L
    Mol Vis; 2009 Sep; 15():1951-61. PubMed ID: 19784394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the therapeutic effects of extracts from Spirulina platensis and amnion membrane on inflammation-associated corneal neovascularization.
    Yang LL; Zhou QJ; Wang Y; Gao Y; Wang YQ
    Int J Ophthalmol; 2012; 5(1):32-7. PubMed ID: 22553751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xanthatin inhibits corneal neovascularization by inhibiting the VEGFR2‑mediated STAT3/PI3K/Akt signaling pathway.
    Shen M; Zhou XZ; Ye L; Yuan Q; Shi C; Zhu PW; Jiang N; Ma MY; Yang QC; Shao Y
    Int J Mol Med; 2018 Aug; 42(2):769-778. PubMed ID: 29717775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emodin suppresses alkali burn-induced corneal inflammation and neovascularization by the vascular endothelial growth factor receptor 2 signaling pathway.
    Xueying Z; Liang G; Siyi L; Fengyue LI; Mingli L; Wanting L; Chun M; Guanghui L
    J Tradit Chin Med; 2024 Apr; 44(2):268-276. PubMed ID: 38504533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of pirfenidone in alkali burn rat cornea.
    Jiang N; Ma M; Li Y; Su T; Zhou XZ; Ye L; Yuan Q; Zhu P; Min Y; Shi W; Xu X; Lv J; Shao Y
    Int Immunopharmacol; 2018 Nov; 64():78-85. PubMed ID: 30153530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effects of the platelet-activating factor receptor antagonists, CV-3988 and Ginkgolide B, on alkali burn-induced corneal neovascularization.
    Lee CM; Jung WK; Na G; Lee DS; Park SG; Seo SK; Yang JW; Yea SS; Lee YM; Park WS; Choi IW
    Cutan Ocul Toxicol; 2015 Mar; 34(1):53-60. PubMed ID: 24754407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Therapeutic effects of zerumbone in an alkali-burned corneal wound healing model.
    Kim JW; Jeong H; Yang MS; Lim CW; Kim B
    Int Immunopharmacol; 2017 Jul; 48():126-134. PubMed ID: 28501766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical role of SDF-1α-induced progenitor cell recruitment and macrophage VEGF production in the experimental corneal neovascularization.
    Liu G; Lu P; Li L; Jin H; He X; Mukaida N; Zhang X
    Mol Vis; 2011; 17():2129-38. PubMed ID: 21850188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antiangiogenic effects of catalpol on rat corneal neovascularization.
    Han Y; Shen M; Tang LY; Tan G; Yang QC; Ye L; Ye LH; Jiang N; Gao GP; Shao Y
    Mol Med Rep; 2018 Feb; 17(2):2187-2194. PubMed ID: 29207076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunostimulatory Effects of Polysaccharides from
    Wu X; Liu Z; Liu Y; Yang Y; Shi F; Cheong KL; Teng B
    Mar Drugs; 2020 Oct; 18(11):. PubMed ID: 33126624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn.
    Yao L; Li ZR; Su WR; Li YP; Lin ML; Zhang WX; Liu Y; Wan Q; Liang D
    PLoS One; 2012; 7(2):e30842. PubMed ID: 22363499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic effects of topical netrin-4 inhibits corneal neovascularization in alkali-burn rats.
    Han Y; Shao Y; Liu T; Qu YL; Li W; Liu Z
    PLoS One; 2015; 10(4):e0122951. PubMed ID: 25853509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ADP-ribosylation factor as a novel target for corneal neovascularization regression.
    Dai C; Liu G; Li L; Xiao Y; Zhang X; Lu P
    Mol Vis; 2012; 18():2947-53. PubMed ID: 23288987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrin-Linked Kinase Controls Choroidal Neovascularization by Recruitment of Endothelial Progenitor Cells.
    Yang XM; Duan CG; Zhang J; Qu XJ; Wang YS
    Invest Ophthalmol Vis Sci; 2018 Apr; 59(5):1779-1789. PubMed ID: 29610861
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Estrella-Mendoza MF; Jiménez-Gómez F; López-Ornelas A; Pérez-Gutiérrez RM; Flores-Estrada J
    Nutrients; 2019 May; 11(5):. PubMed ID: 31137826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activation.
    Lee HS; Jun JH; Jung EH; Koo BA; Kim YS
    Molecules; 2014 Aug; 19(8):12150-72. PubMed ID: 25123184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasminogen kringle 5 inhibits alkali-burn-induced corneal neovascularization.
    Zhang Z; Ma JX; Gao G; Li C; Luo L; Zhang M; Yang W; Jiang A; Kuang W; Xu L; Chen J; Liu Z
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4062-71. PubMed ID: 16249481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vaccarin promotes endothelial cell proliferation in association with neovascularization in vitro and in vivo.
    Xie F; Feng L; Cai W; Qiu Y; Liu Y; Li Y; Du B; Qiu L
    Mol Med Rep; 2015 Jul; 12(1):1131-6. PubMed ID: 25815517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of PDGF receptor inhibitors and PI3-kinase signaling in the pathogenesis of corneal neovascularization.
    Dell S; Peters S; Müther P; Kociok N; Joussen AM
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):1928-37. PubMed ID: 16639000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel bioactivity of NHERF1 in corneal neovascularization.
    Chen P; Wang Y; Yang L; Li C; Wang Y; Xie L; Wang Y
    Graefes Arch Clin Exp Ophthalmol; 2012 Nov; 250(11):1615-25. PubMed ID: 22777301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.