These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. Xue C J Math Biol; 2015 Jan; 70(1-2):1-44. PubMed ID: 24366373 [TBL] [Abstract][Full Text] [Related]
3. Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway. Perthame B; Tang M; Vauchelet N J Math Biol; 2016 Nov; 73(5):1161-1178. PubMed ID: 26993136 [TBL] [Abstract][Full Text] [Related]
5. Spatial modulation of individual behaviors enables an ordered structure of diverse phenotypes during bacterial group migration. Bai Y; He C; Chu P; Long J; Li X; Fu X Elife; 2021 Nov; 10():. PubMed ID: 34726151 [TBL] [Abstract][Full Text] [Related]
6. Derivation of a bacterial nutrient-taxis system with doubly degenerate cross-diffusion as the parabolic limit of a velocity-jump process. Plaza RG J Math Biol; 2019 May; 78(6):1681-1711. PubMed ID: 30603994 [TBL] [Abstract][Full Text] [Related]
7. Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model. Phan TV; Mattingly HH; Vo L; Marvin JS; Looger LL; Emonet T Proc Natl Acad Sci U S A; 2024 Jan; 121(3):e2309251121. PubMed ID: 38194458 [TBL] [Abstract][Full Text] [Related]
8. Learning black- and gray-box chemotactic PDEs/closures from agent based Monte Carlo simulation data. Lee S; Psarellis YM; Siettos CI; Kevrekidis IG J Math Biol; 2023 Jun; 87(1):15. PubMed ID: 37341784 [TBL] [Abstract][Full Text] [Related]
9. Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model. Phan TV; Mattingly HH; Vo L; Marvin JS; Looger LL; Emonet T bioRxiv; 2023 Jun; ():. PubMed ID: 37333331 [TBL] [Abstract][Full Text] [Related]
14. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures. Liu Y; Panesi M; Sahai A; Vinokur M J Chem Phys; 2015 Apr; 142(13):134109. PubMed ID: 25854230 [TBL] [Abstract][Full Text] [Related]
15. Development and applications of a model for cellular response to multiple chemotactic cues. Painter KJ; Maini PK; Othmer HG J Math Biol; 2000 Oct; 41(4):285-314. PubMed ID: 11103868 [TBL] [Abstract][Full Text] [Related]
16. A multiscale maximum entropy moment closure for locally regulated space-time point process models of population dynamics. Raghib M; Hill NA; Dieckmann U J Math Biol; 2011 May; 62(5):605-53. PubMed ID: 20446087 [TBL] [Abstract][Full Text] [Related]
17. Stochastic models for cell motion and taxis. Ionides EL; Fang KS; Isseroff RR; Oster GF J Math Biol; 2004 Jan; 48(1):23-37. PubMed ID: 14685770 [TBL] [Abstract][Full Text] [Related]
18. Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description. Alber M; Chen N; Glimm T; Lushnikov PM Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051901. PubMed ID: 16802961 [TBL] [Abstract][Full Text] [Related]
19. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs. J Vis Exp; 2023 May; (195):. PubMed ID: 37235796 [TBL] [Abstract][Full Text] [Related]
20. Langevin equations for the run-and-tumble of swimming bacteria. Fier G; Hansmann D; Buceta RC Soft Matter; 2018 May; 14(19):3945-3954. PubMed ID: 29736534 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]